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abstract

Nowadays, operational financial flow has gained a growing importance in a

firm’s performance, especially for some production companies. A firm lacking

sufficient budget can turn to several financial schemes, such as bank credit,

trade credit or inventory-based financing to support its need of working capital.

For such a firm, it is worthwhile to investigate the intricate interdependence

between its operational decision and financial status. Analogous to financial

flow, tax consideration, such as the asymmetric tax effect at the end of the

horizon should also be considered if a firm’s business is subject to this factor.

Therefore we explore three studies on operations management problems under

different financial/tax consideration.

In the first study, we consider a multi-period stochastic inventory control

problem where a cash-constrained firm can replenish its inventory by using an

inventory-based financing scheme, under which the firm is able to obtain addi-

tional capital but not exposed to default risk. We show that a state-dependent

base stock policy is optimal. We partially characterize the optimal inventory

and financing decisions. In particular, we show that when faced with a posi-

tive net cash level and a relatively low purchasing equity level, defined as the

net cash level plus on-hand inventory valuated at the purchasing price, the

firm should utilize the inventory-based financing scheme to secure more inven-

tory. Further, when faced with a negative net cash level and a sufficiently high

salvaging equity level, defined as the net cash level plus on-hand inventory valu-

ated at the salvaging price, the firm should salvage down to a certain level. We

i
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demonstrate, through extensive numerical experiments, that how the problem

parameters may affect the optimal inventory and financing decisions and the

associated profits.

In the second study, we integrate two flexibilities ― quick response and

trade credit in a two-level supply chain. We examine four scenarios where a

manufacturer sells a seasonal product to the retailer under demand uncertainty:

traditional system (T), trade-credit system (TC), quick-response system (QR),

and quick-credit system which employs both quick response and trade credit

(TQ). We find under both the cases where the retailer is/is not allowed to

default, from the manufacturer’s perspective, TC system benefits it most and

under some circumstances it is worse off under TQ system than under either QR

or T system; from the retailer’s perspective, QR system dominates TQ system

and TQ system dominates TC system, and under some cases it will benefit most

under T system. In addition, by extensive numerical studies we compare the

supply chain’s overall expected profit under different scenarios.

In the third study, we consider a finite-horizon, discrete-time inventory con-

trol problem under tax asymmetry. The objective is to maximize the expected

after-tax profit at the end of the horizon such as a tax year. We formulate

the problem as a stochastic dynamic programming problem and show that a

state-dependent base stock policy is optimal. We develop several structural

properties that demonstrate the unique features of the proposed multiperiod

inventory problem under tax consideration. We prove the fundamental insight

that in each period, there exists a period-dependent equity interval, in which

the firm should order less than the optimal quantity without tax asymmetry;

but the firm should order the same quantity when its equity level is outside the

interval. We develop some distinct analytical techniques to tackle the inherent

difficulty caused by the model formulation. Our model and results can be readi-

ly adopted in some seemingly different settings such as loss aversion. Finally, we

conduct numerical experiments to show several additional managerial insights.
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摘要

一个公司的运营资金流对于该公司的经营业绩显得非常重要，尤其是对于一

些生产性的企业。一个缺乏足够预算的中小企业可以采用不同的融资方案去

筹资以支持其需要的流动资金，包括银行信贷，贸易信贷或库存质押。对于

这样的公司，探讨和研究其经营决策和财务现金流状况之间的复杂的相互依

存关系是非常有必要的。类似于资金流的考量，一个公司也应该考虑期末非

对称的税收政策对它的营运状况带去的影响。因此在这篇论文中我们考虑三

个在资金流/期末税收影响下的运营管理问题。

在第一项研究中，我们考虑一个多周期的随机库存管理问题，其中零售

商在面对非平稳需求时可以通过使用库存质押的融资计划来动态地补充其库

存，并且是在没有违约风险的前提下进行的。我们证明了每一期存在一个依

赖状态变量的最优补货策略。进一步，我们的研究表明，当公司净现金水平

为正同时购买水平（定义为净现金水平加上现有的按采购价计价的库存）相

对低时，企业可以利用库存质押计划以获取更多的库存。此外，当公司净现

金水平为负同时具有足够高的舍弃水平（定义为净现金水平加上现有的按舍

弃价计价的库存）时，公司应该通过舍弃把库存降低到一个给定的水平。我

们还通过广泛的数值试验，研究了其中的参数变化会如何影响最优补货策略

和融资决策以及相关的利润变化。

在第二项研究中，我们考察了在一个二级供应链中快速反应和贸易信贷

模式的结合。我们主要研究制造商在零售商面对不确定需求下的四种销售系

统：传统系统（T），贸易信贷系统（TC），快速响应系统（QR），以及快

速反应的信贷系统（TQ）。在允许零售商违约或者不允许零售商违约两种

情况下，我们发现无论在哪种情况下从制造商的角度来看，TC系统对他最
iii
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利于而在某些情况下，TQ系统反而不如QR或者T系统；从零售商的角度来

看，QR系统优于TQ系统而TQ系统优于TC系统。同时在一些情况下，T系统

将使她最受惠。除此之外，我们通过数值实验比较了不同系统下的供应链整

体期望利润。

在第三项研究中，我们研究一个有限期的离散时间下考虑期末非对称所

得税的库存控制问题。问题的目标是期末（比如说考虑一个纳税年度之内）

期望利润的最大化。作为一个随机动态规划问题，我们证明了存在一个最优

的依赖状态变量的基础补货策略，并且发现了其中几个有趣的性质。比如

说，在每期内存在一个权益区间，当公司的当期权益落在该权益区间内时，

公司会订货到一个小于不考虑期末税收的库存水平；但当当期权益落在该区

间外面时，公司会订货到一个等于不考虑税收的库存水平。我们的模型和结

果可以很容易地拓展到一些其他情况，比如考虑期末带有厌恶损失的效用。

最后，我们通过数值试验得到了一些其他的管理现象和启示。
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A Multi-period
Inventory-based Financing
Control Problem
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Chapter 1. A Multi-period Inventory-based Financing Control Problem 2

1.1. Introduction

Due to the 2008’s financial crisis and its subsequent entwined influences, many

small and medium-size enterprises (SMEs) are exposed to greater risks of supply

chain disruption due to limited working capital. Increasingly fluctuated market

coupled with tightened bank lending policies have further worsened the plight

of these SMEs, causing many of them hardly to sustain their manufacturing

expenses, such as the replenishment of inventory due to insufficient cash. This

has become a particularly serious problem in recent years for many SMEs in

developing countries such as China. With a banking system nearly monopolized

by a few state-owned banks and an immature credit reporting system, a typical

SME’s request for loan to sustain its working needs will often be rejected by

major Chinese banks. Moreover, since many of these firms are second-tier or

third-tier suppliers with relatively a weak bargaining power, it is often hard

for them to obtain trade credits (a line of credit offered by a supplier to the

buyer, allowing the latter to delay payment) or to secure loans using their trade

accounts receivable (known as factoring). Firth et al. (2009) reported that Chi-

na’s credit guarantee companies served only about 1% of the country’s SMEs.

As a result, these SMEs often have to rely on different supply chain financial

schemes, amongst which inventory-based financing is commonly adopted.

Supply chain financial schemes have been observed across different indus-

tries in many countries such as the United States and China. For example, in

2011, Bank of America supplied Barners & Noble (a large U.S. retail bookseller)

with a $1 billion inventory-secured credit facility (Foley, 2012). In China, some

private-owned banks have launched such financing programs in recent years.

For example, Ping An Bank, a pioneer in providing supply chain financial ser-
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vices for China’s SMEs, launched the service in 2005 and later developed online

“Supply Chain Financial Platform” to provide diversified supply chain financial

services including inventory-based financing. The platform reportedly attract-

ed average daily loan of around RMB 2 billion in 2013 (Ping An Bank, 2014).

Therefore, it would be interesting and also important to study firms’ inventory

decisions under inventory-based financing — one of the important schemes of

the general supply chain financing.

Motivated by its promising perspective and potential concerns in practice,

we study production and inventory management in a firm with inventory-based

financing. The firm produces or acquires a single product to satisfy a stream of

demands in a multi-period finite planning horizon. However, its ability to cap-

ture the demands may be constrained by its limited working capital, in which

case it can use on its inventory as the collateral to secure additional loans.

Clearly, faced with such a unique financing opportunity, the firm’s inventory

and financial flows are dynamically interdependent in complex ways. Thus, we

expect that the characteristics of the firm’s optimal production and inventory

decisions may be very different from that under traditional supply chain set-

tings without cash constraints. In this study, we attempt to provide managerial

insights into the following questions: (a) How should a firm optimally plan for

its production and inventory when faced with the opportunity of inventory-

based financing? (b) What are the unique characteristics of these supply chain

decisions under inventory-based financing? (c) Under what business situation-

s will a firm significantly improve its profitability with the availability of the

inventory-based financing? To address these questions, we propose a general de-

cision framework that incorporates non-stationary demands, loan interest rate,

loan-to-value ratio, and initial inventory and cash levels. In the following we
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summarize our main findings.

First, we find that the firm may benefit most in the situation where it is

faced with a relatively low purchasing equity level, defined as the cash level plus

on-hand inventory valuated at the purchasing price. Because in this case the

inventory-based financing scheme helps the firm partially mitigate the negative

effects of the limited cash. Second, the borrowing firm under inventory-based

financing may be forced to salvage part of its inventory reactively when it is

running out of cash to meet the interest payment in a period. More interestingly,

however, our study suggests that the firm may proactively salvage inventory

under certain conditions. For instance, when the firm has a sufficiently high

salvaging equity level, defined as the cash level plus on-hand inventory valuated

at the salvaging price, it may be optimal to salvage some inventory to payback

all or part of the loans and bring the inventory level down to a certain level.

Third, we find a main message conveyed by both our analytical and numerical

studies: when the firm is short of cash and inventory, and when the predictable

future demand is relatively high, it intends to over-order some inventory through

inventory-based financing. This suggests that inventory-based financing may be

used not only tactically, but also strategically by borrowing firms.

Our proposed research contributes to the literature by studying a new

multi-period inventory management problem with inventory-based financing.

Our settings differs from either the traditional settings without cash constraints

or the cash-constrained settings with zero/unlimited borrowing capacity. Our

study reflects real world practices of the firms that lack of credit rating or market

power to rely on more traditional forms of financing such as bank credit or trade

credit. Our proposed research may help these companies better understand the

intricate interdependencies of inventory and financial flows and to make more
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informed operational and financial decisions. To the banks or other financial

institutions, understanding the mechanism behind this financing scheme may

help them better monitor the risks and the associated profits for their own best

interests.

The rest of this article is organized as follows. In the next section, we

review related literature. In Section 3, we introduce the model and character-

ize the general form of the optimal policy. Section 4 further studies analytical

properties and the structure of the optimal policy. Section 5 presents the numer-

ical experiments and offer additional managerial insights. Finally, this paper is

concluded in Section 6.

1.2. Literature Review

Our proposed study falls into a recently active research field of the interface

between supply chain management and finance. We will review parts of the

rich body of literature in this field that mainly study a firm’s operational and

financing decisions under capital constraints. In the Operations Managemen-

t literature, operational decisions of the firms that are financially constrained

have been studied in recent years. One stream of this research focuses on the

investigation of the impact of a firm’s longer-term financial decisions, e.g., capi-

tal structure, on its operational decisions. This stream of research is motivated

by uncertain and imperfect market conditions which invalidate Modigliani and

Miller (1958)’s conclusion that the financial and operational decisions of a firm

can be made independently. Examples of recent works in this stream include

Xu and Birge (2004, 2006, 2008), Hu and Sobel (2010), and Li et al. (2013).

Another stream of research in this area studies a firm which is cash constrained
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with operational decision relying on various short-term financing choices such

as trade credit, bank credit or asset-based financing. As our work is closely re-

lated to this stream of research, we will offer a more in-depth review of papers

in this stream.

Among various short-term financing choices available to a firm in the devel-

oped economies such as the United States, trade credit and bank credit are the

two most popular schemes. A trade credit refers to an arrangement in which a

supplier issues a line of credit to a buyer, allowing the latter to defer its payment

till a certain time; a bank credit is a certain borrowing capacity a bank offers

to a firm in the form of a loan with borrowing limit. To differentiate from the

asset-based financing, we regards the bank credit as the financing scheme with-

out a collateral. Many papers study various business settings under which it is

advantageous to adopt a certain financing strategy that involves trade credit,

bank credit or both. For example, Kouvelis and Zhao (2012) examine the op-

timal trade credit scheme by choosing both interest rates and wholesale price.

They show under optimal trade credit contracts, both the supplier’s profit and

supply chain efficiency improve and the retailer may be better off compared

with the bank financing scheme. Jing et al. (2012) study the financing equi-

librium between trade credit financing and bank credit financing in a channel

where the retailer is capital constrained. They show the production cost plays

a vital role for firm’s choice. Other examples include Ouyang et al. (2005),

Song and Cai (2006), Zhou and Groenevelt (2007), Ho et al. (2008), Gupta and

Wang (2009), Yang and Birge (2011), Caldentey and Chen (2011), Chen and

Cai (2011), Kouvelis and Zhao (2011), Luo and Shang (2012), Song and Tong

(2012), Chen et al. (2013), and Jing et al. (2013).

Relative to the study on operations and supply chain management with
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trade credit and bank credit financing, asset-based financing has drawn far

less attention from academic research. Buzacott and Zhang (2004) consider a

deterministic multi-period model in which a budget-constrained firm relies on

asset-based financing to fund its growth. The loan limit is determined by it-

s inventory and account receivables. The paper also considers a single-period

newsvendor model in which the firm and the bank seek to maximize their own

expected profit under asset-based financing. They consider the problem in a

game setting where the bank determines the optimal loan interest rate and the

firm decides the corresponding order quantity. Alan and Gaur (2012) study

a firm’s operational investment, probability of bankruptcy and capital struc-

ture under asset-based financing. They show the probability of bankruptcy

and the capital structure in equilibrium are related to information asymmetry,

bankruptcy cost, loan-to-value ratio, and the newsvendor model parameters.

To our knowledge, the dynamic stochastic model proposed in our paper is

the first in the literature to incorporate inventory-based financing in a multi-

period stochastic dynamic setting. Recently, there have been a few papers that

consider inventory management of a budget-constrained firm in a multi-period

stochastic demand setting. Chao et al. (2008) analyze the optimal inventory

policy of a budget-constrained firm. The firm can only acquire inventory under

the budget-limit and cannot borrow from the bank. They show the dependence

of the firm’s optimal inventory policy on its financial status. Gong et al. (2011)

extend this work by allowing the firm to borrow from a bank with an unlimited

capacity. They characterize the optimal inventory policy under different “equi-

ty” level through both analytical and numerical studies. Our inventory-based

financing model is different from these two works. Indeed, the borrowing ca-

pacity of the firm in our proposed study is between that of Chao et al. (2008)
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(zero capacity) and Gong et al. (2014) (unlimited capacity). In addition, this

borrowing capacity is strongly tied to the firm’s inventory decision, a relation-

ship that is not considered in the previous two papers. Finally and connected to

the previous point, we consider the salvaging decision in each period, allowing

the firm to dispose some excess inventory to repay all or part of the current

outstanding loan.

1.3. Model

In this paper, we consider a manufacturer/retailer facing a multi-period

inventory-based financing problem. Compared to the traditional inventory man-

agement problem, the firm only has limited funds for production/procurement.

However, it can collateralize some of its inventory to get loan from a monetary

party such as a bank. Specifically, the sequence of events in each period are as

follows: (1) Determine the salvage quantity and pay interests for loan carried

to this period; (2) Borrow or pay back the outstanding loan, subject to the

available inventory and cash, pay custody fee for the collateralized inventory;

(3) Determine production quantity, and the production takes place instanta-

neously; (4) Demand is realized and satisfied as much as possible; (5) Unmet

demand is lost, leftover inventory is carried to the next period.

Remark. Using inventory finance, as a common practice, the manufacturer

needs to have its collateralized inventory held and monitored by a third party,

such as a third-party logistics service provider, which incurs a relatively high

custody fee or holding costs. For simplicity, we assume that holding costs

for the normal inventory held by the manufacturer itself is ignorable. This is

reasonable, because in practice this costs is relatively low compared with the
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custody fee and can be counted as overhead costs.

Define for t = 1, 2, · · · , T + 1,

t = period index,

Ût = initial cash in period t,

xt = initial inventory level in period t,

q̂t = production quantity in period t,

zt = salvage quantity in period t,

Dt = random demand in period t, Dt can be any non-stationary random

variable,

l̂t = initial loan in period t,

bt = net borrowing in period t, bt < 0 represents a loan repayment,

l̂t + bt = loan in period t after borrowing/repayment, it is also the initial

loan in period t+ 1, i.e., l̂t+1 = l̂t + bt.

In addition, define

p = unit sales price,

c = unit procurement price,

s = unit salvage value at anytime,

h = unit custody fee of collateralized inventory,

α′ = loan interest rate charged by the bank,

γ = proportion of the salvage value of the collateralized inventory that the

manufacturer can borrow, also known as the loan-to-value ratio and it obviously

follows 0 ≤ γ ≤ 1.

Note here we do not consider the deposit interest rate since we do not tend

to over complicate the financial flows within the firm. Thus we only focus on the

cash outflow when the firm borrows from the bank. Suppose the manufacturer

collateralizes one unit of inventory at the beginning of a period, it can obtain
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a loan with the amount of γs. To make sure the manufacturer is able to pay

back interest and principal, the following condition must hold:

s− h− (1 + α′)γs ≥ 0.

This is because the total cost includes interest, principal and holding cost. The

above inequality is equivalent to define an “overall” interest rate:

α , α′ +
h

γs

and this new interest rate should satisfy

α = α′ +
h

γs
≤ s

γs
− 1 =

1

γ
− 1.

In the following discussion, we shall still call α “interest rate” and the associated

costs “interests”.

The dynamic transitions can be expressed as follows. For t = 1, · · · , T ,

xt+1 = (xt − zt + q̂t −Dt)
+,

l̂t+1 = l̂t + bt,

Ût+1 = (Ût − αl̂t + szt + bt − cq̂t) + pmin{Dt, xt − zt + q̂t}.
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Furthermore, we have the following constraints,

cq̂t ≤ Ût − αl̂t + bt + szt, (1.1)

l̂t + bt ≤ γs(xt − zt), (1.2)

l̂t + bt ≥ 0, (1.3)

Ût − αl̂t + bt + szt ≥ 0, (1.4)

q̂t ≥ 0, 0 ≤ zt ≤ xt, (1.5)

Û1 − (1 + α)l̂1 + sx1 > 0. (1.6)

Constraint (1.1) guarantees the production cost is no more than the available

cash. Constraint (1.2) ensures that the firm should not have its total debt more

than its collateral evaluated by the loan-to-value ratio. This constraint guar-

antees a risk-free position to the bank, which also means the firm will never

“default” for the on-going business. Technically, we exclude the case in which

the dynamic process will terminate at a point when the firm is not able to pay-

back the outstanding loan via its total asset (includes both inventory and cash).

Note that we assume fixed salvage value of the collateral, which helps guaran-

tee the risk-free environment and makes the problem tractable. Introducing

a varied salvage value seems more realistic but it will inevitably bring techni-

cal challenges and we leave it to future work. Practically, the “never-default”

assumption is reasonable and reflects many industry practices of supply chain

financing we observe in China. For example, based on public data, the default

rate of the loans based on supply chain financing of Ping An Bank during 2005–

2009 is only 0.65%, which is fairly small compared with 5.7% default rate for

the regular loans during the same period, thereby empirically supporting our
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“never-default” assumption. In fact, in case of inventory-based financing, often,

an authorized party such as a third-party logistics provider continuously mon-

itors the market value of the collateral and tries to ensure that the borrowing

firm is able to payback the outstanding loan. Constraint (1.3) says that the net

loan is nonnegative; constraint (1.4) makes sure that the repayment is no more

than the available cash. Furthermore, to make the model meaningful, we as-

sume the manufacturer has some initial inventory and/or net cash, as expressed

in inequality (1.6).

Let Vt(xt, Ût, l̂t) = maximum profit-to-go starting from period t with initial

inventory xt, initial cash Ût, and initial loan l̂t. We can write the optimality

equations as follows.

For t = T + 1:

VT+1(xT+1, ÛT+1, l̂T+1) = ÛT+1 − (1 + α)l̂T+1 + sxT+1;

For t = 1, · · · , T :

Vt(xt, Ût, l̂t) = max
(zt, q̂t, bt) satisfies

inequalities (1.1) – (1.5)

E
[
Vt+1((xt − zt + q̂t −Dt)

+,

(Ût − αl̂t + szt + bt − cq̂t) + pmin{Dt, xt − zt + q̂t}, l̂t + bt)
]
.

Using arguments similar to Chao et al. (2008), we can prove Lemmas 1

and 2 and Proposition 1.

Lemma 1.3.1. For fixed xt and l̂t, V̂t(xt, Ût, l̂t) is increasing in Ût.

Lemma 1.3.2. V̂t(xt, Ût, l̂t) ≥ V̂t(xt +∆, Ût − p∆, l̂t) for any ∆ ≥ 0.

Note that ∆ ≥ 0 is essential for Lemma 1.3.2, for otherwise if ∆ < 0, then
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l̂t may violate the γ ratio on the loan. The next property shows that the value

function is jointly concave.

Proposition 1.3.1. V̂t(xt, Ût, l̂t) is jointly concave in (xt, Ût, l̂t) for t =

1, · · · , T + 1.

Proof. See Appendix. 2

Proposition 1.3.2. There is an optimal policy such that salvaging and produc-

tion may not occur simultaneously, namely, we have (1) zt > 0 only if q̂t = 0,

and (2) q̂t > 0 only if zt = 0.

Proof. Suppose we have an optimal solution such that in some period t0, we

have zt0 > 0 and q̂t0 > 0. We can modify the solution by reducing salvaging

quantity to zt0 − min{zt0 , q̂t0} and production quantity to q̂t0 − min{zt0 , q̂t0}.

It is easy to check the the solution is feasible and by Lemma 1.3.1 it is also a

better solution with increased (at least equally good) expected profit. 2

By Proposition 2, the two decision variables zt and q̂t may be replaced by

one, so we define qt = q̂t − zt. To further simplify the problem, we define two

new state variables, Ut = Ût − (1 + α)l̂t and lt = l̂t + bt. By definition, qt

means the net ordering quantity and Ut represents the net cash level, which

may be negative at the beginning of period t as if the firm has paid back all the

outstanding loan. Also, lt represents the total outstanding loan after borrowing

or repayment.
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Then for t = 1 · · · , T , we have the following new constraints,

xt+1 = (xt + qt −Dt)
+,

Ut+1 = (Ut + sq−t + lt − cq+t ) + pmin{Dt, xt + qt} − (1 + α)lt,

cq+t ≤ Ut + sq−t + lt (1.7)

lt ≤ γsxt, (1.8)

lt ≤ γs(xt + qt), (1.9)

lt ≥ 0, (1.10)

qt ≥ −xt, (1.11)

U1 + sx1 > 0. (1.12)

Let Vt(xt, Ut) = maximum profit-to-go starting from period t with initial

inventory xt and initial net cash Ut. Then we can write the optimality equations

as follows:

For t = 1, · · · , T :

Vt(xt, Ut) = max
(lt, qt) satisfies

inequalities (1.7) – (1.11)

E
[
Vt+1((xt + qt −Dt)

+, (Ut + sq−t + lt − cq+t )

+ pmin{Dt, xt + qt})− (1 + α)lt

]
.

For t = T + 1:

VT+1(xT+1, UT+1) = UT+1 + sxT+1.

The following result can be proved in a way similar to the proof of Propo-

sition 1.3.1.
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Proposition 1.3.3. Vt(xt, Ut) is jointly concave in (xt, Ut) for t = 1, · · · , T +1.

In addition, it is easy to verify the following property.

Proposition 1.3.4. For a feasible production (salvage) quantity qt in period t,

the optimal outstanding loan lt in that period can be expressed as follows:

lt =

 0, if Ut + sq−t − cq+t ≥ 0,

cq+t − Ut − sq−t , if Ut + sq−t − cq+t < 0.
(1.13)

The above proportion has an intuitive interpretation: if there is a positive

outstanding loan at some period t, then the manufacturer must have used all

the available cash including the loan in that period. For otherwise it can use

the leftover cash to payback part of the loan because of the loan interest will

incur in the next period. Because

E
[
Vt+1((xt + qt −Dt)

+, (Ut + sq−t + lt − cq+t ) + pmin{Dt, xt + qt} − (1 + α)lt)
]

is jointly concave in (xt, Ut, qt, lt), V (xt, Ut) can be obtained by sequential max-
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imization over lt and qt, so

Vt(xt, Ut)

= max
−xt≤qt≤min{Ut+γsxt

c
,
Ut+γsxt
(1−γ)s

}
max

lt satisfies
inequalities (1.7) – (1.11)

E
[
Vt+1((xt + qt −Dt)

+,

(Ut + sq−t + lt − cq+t ) + pmin{Dt, xt + qt} − (1 + α)lt)
]

= max
−xt≤qt≤min{Ut+γsxt

c
,
Ut+γsxt
(1−γ)s

}
E
[
Vt+1((xt + qt −Dt)

+,

(Ut + sq−t − cq+t )
+ + pmin{Dt, xt + qt} − (1 + α)(cq+t − Ut − sq−t )

+)
]
,

= max
0≤yt≤min{xt+

Ut+γsxt
c

,xt+
Ut+γsxt
(1−γ)s

}
E
[
Vt+1((yt −Dt)

+, (Ut + s(yt − xt)
− − c(yt − xt)

+)+

+ pmin{Dt, yt} − (1 + α)(c(yt − xt)
+ − Ut − s(yt − xt)

−)+)
]
,

where the second equality is due to (1.13) and the third equality is obtained by

letting the order-up-to level yt = xt + qt. The constraints of qt deserve some

explanations. First, the inequality qt ≥ −xt is from (1.11) and ensures that

the firm cannot salvage more than its on-hand inventory. Second, if it occurs

the case Ut + γsxt < 0, which means the cash obtained from collateralizing all

available inventory cannot cover all the outstanding loan carried to this period,

then from (1.9) and (1.13), we can see that the firm has to salvage some of its

on-hand inventory to payback part of the loan. The minimum salvage quantity,

denoted q1t , is determined by the break-even condition

Ut + γs(xt + q1t )− sq1t = 0.

Thus, the firm has to salvage at least q1t = Ut+γsxt

s−γs
< 0 in order to guarantee

that outstanding loan can be covered by the collateral. In this case, define a
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new state variable x1
t = xt + q1t and U1

t = Ut − sq1t after salvaging and note

U1
t + γsx1

t ≥ 0, which eventually meets the collateral requirement in (1.9).

Finally, we impose the constraint qt ≤ Ut+γsxt

c
based on (1.7) and (1.13) to meet

the budget constraint when the firm orders instead of salvaging inventory.

Remark. From the above discussions, when Ut+ γsxt < 0, we can modify

the state variables to obtain an equivalent problem as follows: x1
t = xt+ q1t and

U1
t = Ut − sq1t ≤ 0, where q1t = Ut+γsxt

(1−γ)s
< 0. This means that the firm should

first salvage some inventory and the resulting collateral constraint becomes U1
t +

γsx1
t = 0 and the optimality equation becomes

Vt(x
1
t , U

1
t ) = max

−xt≤qt≤q1t

E
[
Vt+1((xt + qt −Dt)

+, (U1
t + s(xt + qt − x1

t )
−

− c(xt + qt − x1
t )

+)+ + pmin{Dt, yt} − (1 + α)(c(xt + qt − x1
t )

+

− Ut − s(xt + qt − x1
t )

−)+)
]
,

or equivalently

Vt(x
1
t , U

1
t ) = max

0≤yt≤x1
t

E
[
Vt+1((yt −Dt)

+, (U1
t + s(yt − x1

t )
− − c(yt − x1

t )
+)+

+ pmin{Dt, yt} − (1 + α)(c(yt − x1
t )

+ − Ut − s(yt − x1
t )

−)+)
]
,

where U1
t < 0 and U1

t + γsx1
t ≥ 0. Therefore, in the rest of the paper, unless

otherwise specified, we will assume without loss of generality that the state

variables satisfy Ut + γsxt ≥ 0.

Based on the above discussions, we obtain the following result.

Proposition 1.3.5. The optimal policy is a state-dependent base stock policy.

Specifically, in each period t, there is an optimal order-up-to or salvage-down-to

level ŷ∗(xt, Ut) and an associated optimal outstanding loan level l∗(xt, Ut) such



www.manaraa.com

Chapter 1. A Multi-period Inventory-based Financing Control Problem 18

that if an ordering decision is made, then order up to ŷ∗t (xt, Ut) otherwise if

a salvaging decision is made, then salvage down to ŷ∗t (xt, Ut). The associated

optimal loan level is expressed by Equation (1.13).

Let y∗t be the optimal base-stock level in period t and recall the optimality

equation is

Vt(xt, Ut) = max
0≤yt≤min{xt+

Ut+γsxt
c

,xt+
Ut+γsxt
(1−γ)s

}
E
[
Vt+1((yt −Dt)

+, (Ut + s(yt − xt)
−

−c(yt − xt)
+)+ + pmin{Dt, yt} − (1 + α)(c(yt − xt)

+ − Ut − s(yt − xt)
−)+)

]
.

To further exploit the problem structures, we define Qt = Ut + sxt and

Rt = Ut + cxt. Qt and Rt can be interpreted as two kinds of equity levels:

salvaging equity level and purchasing (or production) equity level, which are

the cash level Ut plus the inventory xt valuated at the salvaging value s and the

production cost c, respectively. Incorporating these two equity levels, we define

three value functions:

Πs
t(yt, Qt) = E

[
Vt+1((yt −Dt)

+, pmin{Dt, yt}+ (1 + α)(Qt − syt))
]
,

Πd
t (yt, Rt) = E

[
Vt+1((yt −Dt)

+, pmin{Dt, yt}+ (Rt − cyt))
]
,

Πbr
t (yt, Rt) = E

[
Vt+1((yt −Dt)

+, pmin{Dt, yt}+ (1 + α)(Rt − cyt))
]
.

Πs
t(yt, Qt) can be interpreted as the value function when the firm decides to

salvage inventory but still cannot fully repay the total outstanding loan. Simi-

larly, Πd
t (yt, Rt) is the value function when the firm orders by its net cash and
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Πbr
t (yt, Rt) is the value function when the firm makes a production decision by

borrowing under inventory-based financing. Given Qt and Rt, similar to Propo-

sition 2, we can prove Πs
t , Π

d
t , and Πbr

t are all concave in yt and denote yst (Qt),

ydt (Rt) and ybrt (Rt) are the maximizers over the constraint yt ≥ 0, respectively.

1.4. Optimal Policy Structure

In this section, we shall further investigate several properties related to the op-

timal policy. Recall that we assume without loss of generality that the collateral

requirement Ut + γsxt ≥ 0 holds at the beginning of period t. We consider two

cases, namely, Ut ≥ 0 and Ut ≤ 0, in the following two subsections.

1.4.1. Nonnegative Initial Cash Level (Ut ≥ 0)

When the firm has some initial positive net cash at the beginning of period t

(i.e., Ut ≥ 0), it is easy to prove the following property.

Lemma 1.4.1. If Ut ≥ 0, then the firm should never salvage any inventory in

this period.

This is straightforward because under the conditions of zero holding cost

and random demand, salvaging current inventory is no better than keeping all

the inventory on hand when there is no initial outstanding loan.

Lemma 1.4.2. For any period t, t = 1, · · · , T , the following relationship is

satisfied:

ŷ∗t = ydt and y∗t = max{ydt , xt}, if ydt ≤ Rt/c; otherwise ŷ∗t = y∗t = Rt/c, if

ybrt ≤ Rt/c ≤ ydt ; otherwise ŷ∗t = ybrt and y∗t = min{ybrt , Rt+γsxt

c
}, if Rt/c ≤ ybrt .
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Proof. The proof of this lemma is straightforward by using the first order con-

dition. 2

Before further analysis, we introduce a sequence of concave functionsGd
t (yt)

as follows: for t = 1, · · · , T ,

Gd
t (yt) = E

[
(p− c)min{Dt, yt}+Gd

t+1(max{adt+1, (yt −Dt)
+})

]
,

and Gd
T+1(yt) = (s− c)yt for t = T +1, where adT+1 = 0 and adt is the maximizer

of the concave function Gd
t (yt) for t = 1, · · · , T . Suppose Gd

t+1(yt) is concave

and we have
d2Gd

t (yt)

dy2t
= (c − p)ft(yt) + E{yt−Dt≥adt+1}

[d2Gd
t+1(yt−Dt)

dy2t

]
. Note p >

c and
d2Gd

t+1(yt−Dt)

dy2t
≤ 0 when yt − Dt ≥ adt+1, it holds

d2Gd
t (yt)

dy2t
≤ 0, which

guarantees the concavity of Gd
t (yt). Based on Gd

t (yt) and adt+1, we construct

another two sequences of concave functions Gs
t(yt) and Gbr

t (yt) in the following,

for t = 1, · · · , T ,

Gs
t(yt) = E

[
(p− c)min{Dt, yt}+ cyt − (1 + α)syt +Gd

t+1(max{adt+1, (yt −Dt)
+})

]
,

Gbr
t (yt) = E

[
(p− c)min{Dt, yt} − αcyt +Gd

t+1(max{adt+1, (yt −Dt)
+})

]
.

Define ast and abrt as the maximizers of Gs
t(yt) and Gbr

t (yt). The construction

above is analogous to Gong et al. (2011), in which they introduce functions

Gd
t (yt) and Gbr

t (yt) as the major devices to characterize the policy structure.

The main differences between their approach and ours are that we introduce

the salvage function Gs
t(yt) to reflect the firm’s salvage decisions and that we as-

sume a non-stationary demand distribution. In addition, the limited borrowing



www.manaraa.com

Chapter 1. A Multi-period Inventory-based Financing Control Problem 21

capacity due to inventory-based financing adds more complex technical issues

and also generates different policy structures.

Lemma 1.4.3. The following relationship regarding the parameters ast , a
d
t and

abrt is satisfied: For t = 1, · · · , T , (i) ast ≥ adt ≥ abrt ; (ii) if a
d
t+1 ≤ F−1

t+1(
p−(1+α)c

p−c
),

then abrt ≥ adt+1; otherwise, a
br
t = F−1

t (p−(1+α)c
p−c

).

Proof. It is easy to verify that
dGs

t (yt)

dyt
=

dGd
t (yt)

dyt
+ (c − αs − s) and

dGs
t (yt)

dyt
=

dGd
t (yt)

dyt
− αc, which immediately implies ast ≥ adt ≥ abrt . The proof of the second

part is referred to (iii) of Theorem 2 in Gong et al. (2011). 2

In the next proposition, we characterize the optimal inventory policy for

three different regions.

Proposition 1.4.1. For t = 1, · · · , T , suppose the initial cash Ut ≥ 0, the

following results hold:

(i) when Rt ≥ cadt , the optimal policy is an order-up-to policy with ŷ∗t = adt and

y∗t = max{xt, a
d
t };

(ii) when cabrt ≤ Rt ≤ cadt , the optimal policy is an order-up-to policy with

ŷ∗t = y∗t = Rt/c by using up all on-hand cash;

(iii) when Rt ≤ cabrt , the optimal policy is a state-dependent order-up-to policy

with ŷ∗t = ybrt and y∗t = min{ybrt , R+γsxt

c
} by borrowing under inventory-based

financing.

Proof. See Appendix. 2

From this proposition, we see that in the case of a nonnegative initial cash

the equality level plays an important role in determining the optimal policy.

Specifically, we can see when the purchasing equity level Rt is above a threshold
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adt , due to the decomposition property of the value function Πd
t (yt, Rt), the

firm should optimally order up to a constant inventory level adt ; for a smaller

Rt ∈ [cabrt , ca
d
t ], the optimal policy is to order up to the level Rt/c by simply

using up all the on-hand cash; when Rt further decreases to a level less than

cabrt , the firm will turn to inventory-based financing for “over-ordering”. This

behavior occurs when the current on-hand capital is insufficient to afford the

inventory for current or future demand. Compared to the traditional inventory

control setting without budget constraints, the “poor” firm in our model can

not order up to that unconstrained level adt . In addition, we see that the optimal

order-up-to level under the inventory-based financing is between the one under

zero capacity in Chao et al. (2008) and the one under unlimited capacity in

Gong et al. (2014). The following example illustrates the structure of the

optimal policy.

Example 1.4.1. Consider a two-period instance with p = 1.3, c = 1, s = 0.5,

γ = 0.5, α = 0.1, D1 ∈ [0, 10] ∼ truncated normal distribution with mean

5 and standard deviation 5, D2 has the same distribution as D1 and D2 is

independent of D1. The initial cash level in period 1 is U = 2. The optimal

policy for different initial inventory level x ∈ [0, 10] is shown in Figure 1.1.

Figure 1 shows that when the initial cash level is positive and when the

inventory level is low, the firm should over-order by using more than its on-hand

cash through inventory-based financing. When the inventory level increases,

it should first use up its on-hand cash and then order to a certain level by

using part of its cash or even not order. Note that as stated in Lemma 3, in

this example the initial cash level is positive, so the firm should not consider

salvaging existing inventory in the current period.
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Figure 1.1: Optimal Inventory Level for Different x with U = 2

1.4.2. Negative Initial Cash Level (Ut < 0)

With some outstanding loans at the beginning of period t (i.e., Ut < 0), in

addition to ordering, the firm could also instead consider the salvaging option

to pay back part or all of the loan if it has a large amount of inventory. We

first provide a property that characterizes the optimal policy when its salvaging

equity level Qt is sufficiently high and then discuss some examples to illustrate

the structures and complexities in this case.

Proposition 1.4.2. For t = 1, · · · , T , suppose Ut < 0, the following proper-

ty holds: when Qt ≥ sast , the optimal policy is a salvage-down-to policy with

ŷ∗t (Qt) = y∗t (Qt) = Qt/s;

Proof. See Appendix. 2

We see that the firm optimally pays back all the outstanding loan by sal-

vaging some inventory when its salvaging equity level is above a threshold. For

other cases that the salvaging equity level is not this high, due to the complex-
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ity of whether to salvage or to order, it seems unlikely we can decompose the

value function in a manner similar to the previous analysis. In the following

we will first illustrate the general structure of the optimal policy via a two-

period example, and then further discuss the structure of a two-period special

case with deterministic demand in the first period and random demand in the

second period.

Example 1.4.2. Consider a two-period instance with p = 1.3, c = 1, s = 0.5,

γ = 0.5, α = 0.1, D1 ∼ [0, 10] follows a truncated normal distribution with

mean 5 and standard deviation 5; D2 has the same distribution as D1 and D2

is independent of D1. The initial cash level in period 1 is U = −2. The optimal

policy under different initial inventory level x ∈ [5, 24] is shown in Figure 1.2.
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Figure 1.2: Optimal Inventory Level for Different x with U = −2

Figure 2 provides us a concrete picture of how the optimal policy behaves

when the firm has some initial outstanding loan. We observe the optimal in-

ventory level y∗ increases in the initial inventory level x given U = −2. We

further find four intervals regarding the optimal inventory level y∗ for different
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x: when x is small, i.e., x ∈ [5, 8], y∗ lies below x which means the firm should

salvage some inventory to reach the collateral requirement; with a larger x, i.e.,

x ∈ [8, 16], the firm should stay at the initial inventory level and y∗ should be

equal to x; when x further increases, i.e., x ∈ [16, 21], the firm should salvage

down to a certain level y∗ = 16; for the rest of x, i.e., x ∈ [21, 24], the fir-

m should salvage the inventory to pay back all the outstanding loan, which is

asserted in Proposition 1.4.2. Finally, we note the firm should not order any

additional inventory in this example. This is understandable since the firm will

incur more interests and yet barely get profits from the additional inventory

when it chooses to over-order.

Next, to better understand the firm’s ordering and salvaging decisions, we

consider a two-period special case with the following settings: the demand d

in the first period is deterministic and the demand D in the second period is

random with distribution function F (·) and support [0,∞). This special case

seems plausible because the current demand is often much easier to estimate

than the future trends. Suppose the initial cash level and inventory level in

the first period are x and U , respectively. We focus on the case where U < 0

and x > d; other cases can be analyzed through the procedures in Section 4.1.

Without loss of generality we assume U + γsx ≥ 0. Then, the firm’s decision

problem in the first period can be described as follows:

V1(x, U) = max
0≤y≤x+U+γsx

c

V2

(
(y − d)+, pmin{y, d}+ (U + s(x− y)+ − c(y − x)+)+

− (1 + α)(c(y − x)+ − U − s(x− y)+)+
)
,



www.manaraa.com

Chapter 1. A Multi-period Inventory-based Financing Control Problem 26

where

V2(x2, U2)

= max
0≤y2≤x2+min{U2+γsx2

c
,
U2+γsx2
(1−γ)s

}
E
[
pmin{y2, D}+ (U + s(x2 − y2)

+ − c(y2 − x2)
+)+

− (1 + α)(c(y2 − x2)
+ − U2 − s(x2 − y2)

+)+ + s(y2 −D)+
]
.

We assume that 0 ≤ αγs+αs+γs−γs2/c
(p−s)(γs−αc)/c

≤ 1 (otherwise the firm will

use a simpler order-up-to policy), and let z0 be the unique solution to

F̄ (pd+(1+α)(R−cd)+(γs−αc)z
c

) = αγs+αs+γs−γs2/c
(p−s)(γs−αc)/c

.

Proposition 1.4.3. For the special case defined above, assume U < 0 and

x > d, and 0 ≤ αγs+αs+γs−γs2/c
(p−s)(γs−αc)/c

≤ 1. If z0 + d ≥ x, the optimal policy is

the order-up-to policy with ŷ∗ = min{z0 + d, R+γsx
c

}; otherwise the firm should

salvage down to ŷ∗ that can be expressed as follows:

ŷ∗ =


pd+(1+α)Q

(1+α)s
, z1 ≤ (p−s−αs)d+(1+α)Q

(1+α)s
;

z1 + d, (p−s−αs)d+(1+α)Q
(1+α)s

≤ z1 ≤ (p−s−αs)d+(1+α)Q
(1+α)s−γs

;

(p−γs)d+(1+α)Q
(1+α)s−γs

, z1 ≥ (p−s−αs)d+(1+α)Q
(1+α)s−γs

,

where z1 = F−1(p−(1+α)2s
p−s

). In addition, the optimal inventory level y∗ =

min{x, ŷ∗}.

Proof. See Appendix. 2

We see two opposite decisions for different initial inventory levels in this

case. On the one hand, with relatively low inventory level and anticipating

a high future demand, the firm would acquire additional inventory through

inventory-based financing. In fact, the “ordering” condition z0 + d ≥ x, i.e.,
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cF̄−1
(αγs+αs+γs−γs2/c

(p−s)(γs−αc)/c

)
− pd − (1 + α)(R − cd) ≥ (x − d)(γs − αc) implies that

the “composite” equity level (1 + α)R + (γs − αc)x is smaller than a thresh-

old level and/or the second-period demand D is stochastically large. On the

other hand, when the firm has a high initial inventory level, it intends to

pay (partially) the outstanding loan by liquidating part of the on-hand in-

ventory. Specifically, when the salvaging equity level is sufficiently high, i.e.,

Q ≥ Q1 ,
(1+α)sF−1(

p−(1+α)2s
p−s

)+((1+α)s−p)d

1+α
, the firm’s optimal policy is to salvage

down to the inventory level at which all its outstanding loan is paid off after

the first period. In addition, in this scenario, the firm should salvage a positive

amount of inventory if x ≥ pd+(1+α)Q
(1+α)s

, i.e., U ≤ − pd
1+α

, which is not related to

any initial inventory level. Furthermore, if Q is intermediate, i.e., Q2 ≤ Q ≤ Q1

(given that Q2 = U2 + γsx2 ≤ Q1), the firm should consider paying off part

of the outstanding loan by salvaging-down-to a constant level z1 + d; otherwise

when Q further falls below Q2, the firm should pay back as much as possible

to make sure that U2 + γsx2 ≥ 0, i.e., it will not default at the beginning of

period 2. From the above discussions, we see that when faced with a negative

net cash level, the firm needs to carefully check its current state variables to

decide whether to order or salvage, and if so, how much to order or salvage.

The following example provides an illustration for these decisions.

Example 1.4.3. Consider a two-period instance with p = 3, c = 1, s = 0.5,

γ = 0.5, α = 0.5, d = 1 and D follows a truncated normal distribution in

the interval [0, 40] with mean 20 and standard deviation 20. Suppose D is

independent of d. The initial inventory level and cash level are x = 30 and

U = −7 in the first period. The optimal salvage-down-to level should be ŷ∗ =

(p−γs)d+(1+α)Q
(1+α)s−γs

= 29.5; when x increases to 32, ŷ∗ = z1 + d = 29.8 and when

x = 40, ŷ∗ = pd+(1+α)Q
(1+α)s

= 30.
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1.5. Numerical Study

In this section, we conduct a variety of numerical experiments to study the

structure of the optimal policy under different parametric settings, the impact

of the demand uncertainty on the optimal policy, and the percentage profit

improvement under inventory-based financing. We test exhaustive combinations

of the problem parameters and find the results are quite robust. We fix T = 2

in the subsequent experiments. The two-period instances can serve the general

purpose of illustrating the major insights carried by inventory-based financing.

1.5.1. Comparative statics

We first study the impact of initial cash level U on the optimal policy. We

set the following numerical example parameters as benchmark: p = 3, c = 1,

s = 0.5, α = 0.1, γ = 0.5, D1 and D2 are truncated normally distributed in

the interval [0, 10] with µ1 = µ2 = 5 and σ1 = σ2 = 5, and D1 is independent

of D2. Figure 3 plots the optimal policy under different cash levels, namely,

U = 2, 0,−2.

We observe from Figure 3 that given any initial inventory level x, the

optimal inventory level y∗ is larger for a higher initial cash level U . This concurs

with our intuition that the firm will order more if it is endowed with a larger

amount of cash. In addition, the shape of the optimal policy is similar as those

presented in Examples 1 and 2. When the inventory level x is small, the firm

optimally over-orders by inventory-based financing for U = 2 and U = 0 while

salvages to pay back some outstanding loan for U = −2; as x increases, the line

for y∗ under either U = 2 and U = 0 becomes flat, meaning the firm should
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Figure 1.3: Optimal Inventory Level for Different x with U = 2, 0, − 2

order up to a constant level; for larger x, the three lines for optimal policy begin

to overlap representing the firm will neither order nor salvage; for even larger x,

the firm will still keep the inventory at the initial level x for U = 2 and U = 0

but salvages some inventory for U = −2.
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Figure 1.4: Optimal Inventory Level for Different x with γ = 0.1, 0.5, 0.9

Figure 1.4 shows the results for different loan-to-value ratio γ and for both

U = 2 and U = −2. We find the firm will use more inventory-based financing

for a given x and U with a larger γ. This is straightforward since with a larger γ,
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Figure 1.5: Optimal Inventory Level for Different x with α = 0.1, 0.3, 0.5
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Figure 1.6: Optimal Inventory Level for Different x with σ1 = 0, 3, 5

the firm can afford more inventory when using the financing scheme. Figure 1.5

shows that for different loan interest rate α, the optimal y∗ is getting smaller

as α grows. This is due to the fact that the higher the borrowing cost, the

less the firm will order under the inventory-based financing scheme. Figure 1.6

investigates the influence of the standard deviation σ1 in the first period. We

find that the larger σ1, the more inventory the firm will order. This reflects

the simple fact that the firm has to order more to cope with higher demand

uncertainty. Particularly, if the demand is deterministic in the first period, it

is optimal to fulfill that amount and possibly carry some additional inventory
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to prepare for random future demand. In addition, Figures 4, 5, and 6 share

a common characteristic that the line of the optimal policy is more drastically

differentiated from each other under U = −2 than under U = 2. This shows

that the change of the problem parameters will exert more significant effect on

the optimal policy for “poor” firms that are short of cash.

1.5.2. Profit Improvement Percentage

We define the profit improvement percentage of the optimal policy as the per-

centage of increase in the expected profit compared with the optimal expected

profit under the policy without inventory-based financing, i.e.,

PI = (
VIF

VNIF

− 1) ∗ 100%

Table 1.1: Profit Improvement Percentage under Demand Pattern A

α, γ, x
µ1 = 3 µ1 = 5 µ1 = 7

U = 1 U = −1 U = 1 U = −1 U = 1 U = −1
0.1, 0.3, 3 2.44 % 20.8 % 2.76 % 21.15 % 3.06 % 21.44 %
0.1, 0.3, 5 1.47 % 12.84 % 1.94 % 13.6 % 2.42 % 14.33 %
0.1, 0.5, 3 3.9 % 50.66 % 4.44 % 51.82 % 4.96 % 52.77 %
0.1, 0.5, 5 2.17 % 21.34 % 2.92 % 23.01 % 3.7 % 24.65 %
0.3, 0.3, 3 1.81 % 19.85 % 2.18 % 20.23 % 2.52 % 20.54 %
0.3, 0.3, 5 0.75 % 11.88 % 1.25 % 12.72 % 1.76 % 13.5 %
0.3, 0.5, 3 2.85 % 48.41 % 3.48 % 49.67 % 4.07 % 50.69 %
0.3, 0.5, 5 0.97 % 19.39 % 1.78 % 21.21 % 2.61 % 22.95 %

To report the numerical study, we investigate two demand patterns A and

B: pattern A means we fix the second-period demand mean µ2 = 5 and vary the

first-period demand mean µ1 from low (µ1 = 3), to medium (µ1 = 5), and then

to high (µ1 = 7) whereas pattern B stands for the opposite, in which µ1 = 5 and

µ2 is varied from low to high. Within this two demand patterns, we group the
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instances as follows: we construct 16 scenarios by letting U = 1 and U = −1,

x = 3 and x = 5, α = 0.1 and α = 0.3 and, γ = 0.3 and γ = 0.5. Note we

separate the cash level U from α, γ and x in Table 1 and 2 since the performance

under a positive cash level is much different from that under a negative cash

level. First, from Table 1, we have the following observations for pattern A:

(1) The percentage profit improvement is more significant under lower in-

terest rate (α = 0.1), higher loan-to-value ratio (γ = 0.5) and lower initial

inventory level (x = 3).

(2) For both cash levels under consideration, the profit improvement is

higher with a larger µ1, i.e., PI(µ1 = 7) > PI(µ1 = 5) > PI(µ1 = 3). This

is because anticipating a larger demand for the current period, a firm short of

cash and inventory will over-order, which can somehow satisfy more demand,

thereby contributing more to the firm’s surplus.

(3) The relative profit improvement is higher under the negative cash level

U = −1 than under the positive cash level U = 1. This is straightforward since

the financing scheme becomes more valuable to a firm carried with outstanding

loan.

Next, we present main observations for pattern B. We find that the above

statements (1) and (3) hold in this pattern but some assertion in (2) does not.

In particular, except for the case that x = 3, U = −1 where it still follows

PI(µ2 = 7) > PI(µ2 = 5) > PI(µ2 = 3), we observe the opposite relationship

PI(µ2 = 3) > PI(µ2 = 5) > PI(µ2 = 7) for all other cases. This is because the

inventory-based financing is most beneficial when x = 3, U = −1, at which the

scheme can still eventually increase the relative profit improvement given a pair

of increasing benchmark profits, i.e., from VNIF (µ2 = 3) to VNIF (µ2 = 7). For

other cases, although the scheme can always increase the expected profit for any
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demand mean µ2, the relative profit increase actually drops due to the increasing

benchmark profits. Furthermore, compared with Pattern A, the variation of

p becomes narrower in B which means the relative profit improvement gets

comparatively smaller. We interpret this as follows: Pattern A concentrates on

the demand pattern variation for the first period while Pattern B focuses on the

second period. Clearly, the profit is more sensitive to the first-period demand

variation than to the second-period variation, leading to different magnitudes

of profit improvements between the two demand patterns.

Table 1.2: Profit Improvement Percentage under Demand Pattern B

α, γ, x
µ2 = 3 µ2 = 5 µ2 = 7

U = 1 U = −1 U = 1 U = −1 U = 1 U = −1
0.1, 0.3, 3 2.88 % 19.96 % 2.76 % 21.15 % 2.66 % 22.21 %
0.1, 0.3, 5 2.04 % 14.43 % 1.94 % 13.6 % 1.87 % 12.9 %
0.1, 0.5, 3 4.63 % 48.11 % 4.44 % 51.82 % 4.29 % 55.3 %
0.1, 0.5, 5 3.07 % 24.42 % 2.92 % 23.01 % 2.8 % 21.82 %
0.3, 0.3, 3 2.29 % 19.1 % 2.18 % 20.23 % 2.09 % 21.24 %
0.3, 0.3, 5 1.32 % 13.52 % 1.25 % 12.72 % 1.19 % 12.04 %
0.3, 0.5, 3 3.65 % 46.13 % 3.48 % 49.67 % 3.34 % 52.97 %
0.3, 0.5, 5 1.87 % 22.56 % 1.78 % 21.21 % 1.69 % 20.06 %

1.6. Concluding Remarks

In this paper, we study a stochastic dynamic inventory control problem for

a capital-constrained firm which can borrow short-term loans to support its

production under inventory-based financing scheme. In our model, the loan

capacity is closely related to the firm’s equity level, which guarantees a risk-

free position to the bank. We partially derive the optimal inventory policy

and characterize the interdependence of its inventory flow and financial flow.

We show an purchasing- or salvaging-equity-level-dependent base-stock policy
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is optimal in each period. More specifically, when the firm’s purchasing or

salvaging equity level is sufficiently high, it should either order or salvage to a

certain constant level whereas when it has a relatively low equity level, it should

obtain some loans by inventory-based financing to secure additional inventory.

We also find some underlying managerial insights through extensive nu-

merical experiments. Ceteris paribus, under lower interest rate, higher loan-to-

value ratio, negative initial cash level and lower initial inventory level, the firm

intends to order more and the percentage profit improvement becomes more sig-

nificant compared with the optimal policy in which there is no inventory-based

financing. Furthermore, the demand pattern also plays an important role on

the profitability of the financing scheme. The improvement is most significant

under the case where the current or future demand is stochastically high, and

this impact is more sensitive to the current demand than to the future demand.

Our models have some limitations. For example, we assume there is no

holding cost and no deposit rate in our formation. In some business situation-

s, these two factors may not be negligible. Another interesting direction is to

consider varied salvage values for the collateral. For instance, the bank should

adjust the loan rate or the loan-to-value ratio dynamically to accommodate

a fluctuated collateral price in the spot or future market. Relaxing these as-

sumptions could possibly lead to new insights, which, however, will also impose

significant technical challenges that are beyond the current scope of this article.
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1.7. Appendix

Proof of Proposition 1.3.1

Proof. We prove by induction. It is obvious that V̂T+1(xT+1, ÛT+1, l̂T+1) is joint-

ly concave in (xT+1, ÛT+1, l̂T+1) since all terms are linear in (xT+1, ÛT+1, l̂T+1).

Suppose V̂t+1(xt+1, Ût+1, l̂t+1) is jointly concave in (xt+1, Ût+1, l̂t+1) for 1 ≤ t ≤

T . We shall prove V̂t(xt, Ût, l̂t) is jointly concave in (xt, Ût, l̂t). To do so, we

shall first show that

V̂t+1((xt − zt + q̂t − dt)
+, (Ût − αl̂t + szt + bt − cq̂t) + pmin{dt, xt − zt + q̂t}, l̂t + bt)

is jointly concave in (xt, Ût, l̂t, zt, q̂t, bt). Namely, we shall show that for any

(x1
t , Û

1
t , l̂

1
t , z

1
t , q̂

1
t , b

1
t ), (x

2
t , Û

2
t , l̂

2
t , z

2
t , q̂

2
t , b

2
t ) ∈ St and 0 ≤ η ≤ 1, we have

V̂t+1((η(x
1
t − z1t + q̂1t ) + (1− η)(x2

t − z2t + q̂2t )− dt)
+,

(η(Û1
t − αl̂1t + sz1t + b1t − cq̂1t ) + (1− η)(Û2

t − αl̂2t + sz2t + b2t − cq̂2t ))

+pmin{dt, η(x1
t − z1t + q̂1

t
) + (1− η)(x2

t − z2t + q̂2
t
)}, η(l̂1t + b1t ) + (1− η)(l̂1t + b1t ))

≥ ηV̂t+1((x
1
t − z1t + q̂1t − dt)

+, (Û1
t − αl̂1t + sz1t + b1t − cq̂1t )

+pmin{dt, x1
t − z1t + q̂1

t
}, l̂1t + b1t )

+(1− η)V̂t+1((x
2
t − z2t + q̂2t − dt)

+, (Û2
t − αl̂2t + sz2t + b2t − cq̂2t )

+pmin{dt, x2
t − z2t + q̂2

t
}, l̂2t + b2t ).
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Let

∆ = −
(
η
(
x1
t − z1t + q̂1t

)
+ (1− η)

(
x2
t − z2t + q̂2t

)
− dt

)+
+
(
η
(
x1
t − z1t + q̂1t − dt

)+
+ (1− η)

(
x2
t − z2t + q̂2t − dt

)+) ≥ 0.

Note that

(η(x1
t − z1t + q̂1t ) + (1− η)(x2

t − z2t + q̂2t )− dt)
+ +∆

= η
(
x1
t − z1t + q̂1t − dt

)+
+ (1− η)

(
x2
t − z2t + q̂2t − dt

)+
and

pmin{dt, η(x1
t − z1t + q̂1

t
) + (1− η)(x2

t − z2t + q̂2
t
)} − p∆

= pmin{dt, η(x1
t − z1t + q̂1

t
) + (1− η)(x2

t − z2t + q̂2
t
)}

+p
(
η
(
x1
t − z1t + q̂1t

)
+ (1− η)

(
x2
t − z2t + q̂2t

)
− dt

)+
−p

(
η
(
x1
t − z1t + q̂1t − dt

)+
+ (1− η)

(
x2
t − z2t + q̂2t − dt

)+)
= pmin{dt, η(x1

t − z1t + q̂1
t
) + (1− η)(x2

t − z2t + q̂2
t
)}

+p
(
η
(
x1
t − z1t + q̂1t

)
+ (1− η)

(
x2
t − z2t + q̂2t

))
−pmin{η

(
x1
t − z1t + q̂1t

)
+ (1− η)

(
x2
t − z2t + q̂2t

)
, dt}

−p(η
(
x1
t − z1t + q̂1t

)
− ηmin{x1

t − z1t + q̂1t , dt}

+(1− η)
(
x2
t − z2t + q̂2t

)
− (1− η)min{x2

t − z2t + q̂t, dt})

= pηmin{x1
t − z1t + q̂1t , dt}+ p(1− η)min{x2

t − z2t + q̂t, dt}.
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Hence

V̂t+1((η(x
1
t − z1t + q̂1t ) + (1− η)(x2

t − z2t + q̂2t )− dt)
+,

(η(Û1
t − αl̂1t + sz1t + b1t − cq̂1t ) + (1− η)(Û2

t − αl̂2t + sz2t + b2t − cq̂2t ))

+ pmin{dt, η(x1
t − z1t + q̂1

t
) + (1− η)(x2

t − z2t + q̂2
t
)},

η(l̂1t + b1t ) + (1− η)(l̂2t + b2t ))

≥ V̂t+1((η(x
1
t − z1t + q̂1t ) + (1− η)(x2

t − z2t + q̂2t )− dt)
+ +∆,

(η(Û1
t − αl̂1t + sz1t + b1t − cq̂1t ) + (1− η)(Û2

t − αl̂2t + sz2t + b2t − cq̂2t ))

+ pmin{dt, η(x1
t − z1t + q̂1

t
) + (1− η)(x2

t − z2t + q̂2
t
)−∆},

η(l̂1t + b1t ) + (1− η)(l̂2t + b2t ))

= V̂t+1(η
(
x1
t − z1t + q̂1t − dt

)+
+ (1− η)

(
x2
t − z2t + q̂2t − dt

)+
,

(η(Û1
t − αl̂1t + sz1t + b1t − cq̂1t ) + (1− η)(Û2

t − αl̂2t + sz2t + b2t − cq̂2t ))

+ pηmin{x1
t − z1t + q̂1t , dt}+ p(1− η)min{x2

t − z2t + q̂t, dt}},

η(l̂1t + b1t ) + (1− η)(l̂2t + b2t ))

≥ ηV̂t+1((x
1
t − z1t + q̂1t − dt)

+, (Û1
t − αl̂1t + sz1t + b1t − cq̂1t )

+ pmin{dt, x1
t − z1t + q̂1

t
}, l̂1t + b1t )

+(1− η)V̂t+1((x
2
t − z2t + q̂2t − dt)

+, (Û2
t − αl̂2t + sz2t + b2t − cq̂2t )

+ pmin{dt, x2
t − z2t + q̂2

t
}, l̂2t + b2t ).

where the first inequality is by Lemma 1.3.2 and the second inequality is by

inductive assumption. So we have shown that

V̂t+1((xt − zt + q̂t − dt)
+, (Ût − αl̂t + szt + bt − cq̂t)

+ pmin{dt, xt − zt + q̂t}, l̂t + bt)
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is jointly concave in (xt, Ût, l̂t, zt, q̂t, bt). Since

V̂t(xt, Ût, l̂t) = max
(zt, q̂t, bt) satisfies

inequalities (1.1) – (1.5)

E
[
V̂t+1((xt − zt + q̂t − dt)

+,

(Ût − αl̂t + szt + bt − cq̂t) + pmin{dt, xt − zt + q̂t}, l̂t + bt)
]

and Ŝt , {(xt, Ût, lt, zt, q̂t, bt) : (xt, Ût, l̂t, zt, q̂t, bt) satisfies inequalities (1.1) - (1.5)}

is a convex set, we conclude that V̂t(xt, Ût, l̂t) is jointly concave in (xt, Ût, l̂t). 2

Proof of Proposition 1.4.1

Proof. First we show when Ut ≥ 0, the value function Vt(xt, Ut) =

Gd
t (max{adt , xt}) +Ht(Rt), where

Ht(Rt) =


Rt, Rt ≥ cadt ;

Πd
t (Rt/c,Rt)−Gd

t (a
d
t ), cabrt ≤ Rt ≤ cadt ;

Πbr
t (y

∗
t , Rt)−Gd

t (a
d
t ), 0 ≤ Rt ≤ cabrt .

Suppose for period t + 1 it follows Vt+1(xt+1, Ut+1) = Gd
t+1(max{adt+1, xt+1}) +

Rt+1 if Rt+1 ≥ cat+1 and Ut+1 ≥ 0. In period t, assume Rt ≥ cadt and yt ≤ Rt/c,

we have Ut+1 = pmin{yt, Dt}+(Rt− cyt) ≥ 0 and Rt+1 = (p− c)min{yt, Dt}+

Rt ≥ cadt ≥ cadt+1. Therefore by the inductive assumption for Vt+1, it holds,

Πd
t (yt, Rt) = E

[
Vt+1((yt −Dt)

+, pmin{Dt, yt}+ (Rt − cyt))
]

= E
[
((p− c)min{yt, Dt}+Rt +Gd

t+1(max{adt+1, (yt −Dt)
+})

]
= Rt +Gd

t (yt)
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Notice adt is the maximizer of Gd
t (yt), we have

dGd
t (xt)

dyt
≤ 0 if xt ≥ adt , which

implies that the firm should never order if her inventory level is above xt. On

the other hand, if xt < adt and since Rt ≥ cadt holds, it is optimal for the firm

to order up to the constant inventory level adt . Thus it follows Vt(xt, Ut) =

Gd
t (max{adt , xt}) +Rt when Rt ≥ cadt .

Next we should prove when cabrt ≤ Rt ≤ cadt , it follows y∗t = Rt/c. To

prove this, it suffices to prove that cybrt ≤ Rt ≤ cydt in this case. If Rt ≥ cadt+1,

the result Rt/c ≤ ydt is clearly true; otherwise if cabrt ≤ Rt ≤ cadt+1 and when

yt ≤ Rt/c, by the inductive assumption for t+ 1,

Πd
t (yt, Rt) = Gd

t+1(a
d
t+1) + E

[
Ht+1((p− c)min{Dt, yt}+Rt)

]

Then taking the partial derivative with respect to yt and letting yt = Rt/c,

∂Πd
t (yt, Rt)

dyt
|yt=Rt/c = E

[
((p− c)1{Rt/c≤Dt})H

′
t+1((p− c)min{Dt, Rt/c}+Rt)

]
≥ 0

where 1{ } is the indicator function and the inequality holds because Ht(Rt)

increases in Rt. Thus we conclude Rt/c ≤ ydt .

Then we prove Rt/c ≥ ybrt . If Rt ≥ cadt+1, according to the definition

of Πd
t (yt, Rt), we can easily show

∂Πbr
t (yt,Rt)

dyt
|yt=Rt/c ≤ 0; on the other hand if

cabrt ≤ Rt ≤ cadt+1, according to Lemma 5, it follows abrt = F−1
t (p−(1+α)c

p−c
). When

yt ≤ Rt/c, by the induction for t+ 1,

Πbr
t (yt, Rt) = E

[
Vt+1((yt −Dt)

+, pmin{Dt, yt}+ (1 + α)(Rt − cyt))
]

= E
[
Gd

t+1(a
d
t+1) +Ht+1((p− c)min{yt, Dt}+ (1 + α)Rt − αcyt)

]
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Taking the partial derivative with respect to yt and letting yt = Rt/c, we have

∂Πbr
t (yt, Rt)

dyt
|yt=Rt/c

= E
[
((p− c)1{Rt/c≤Dt} − αc)H ′

t+1((p− c)min{Dt, Rt/c}+Rt)
]

= (p− c)F̄t(Rt/c)H
′
t+1(pRt/c)− αcE

[
H ′

t+1((p− c)min{Dt, Rt/c}+Rt)
]

≤ ((p− c)F̄t(Rt/c)− αc)E
[
H ′

t+1((p− c)min{Dt, Rt/c}+Rt)
]

≤ 0

The first inequality is because H ′
t+1(·) is decreasing and the second inequality

is because Rt ≥ cabrt and abrt = F−1
t (p−(1+α)c

p−c
). Hence, Rt/c ≥ abrt and we have

proved Ht(Rt) = Πd
t (Rt/c,Rt)−Gd

t (a
d
t ) when cabrt ≤ Rt ≤ cadt .

Finally, when Rt ≤ cabrt , it suffices to prove Πt(yt, Rt) increases in yt when

yt ≤ Rt/c. If Rt ≥ cadt+1, it is easy to verify that ŷ∗t = abrt ; otherwise if

0 ≤ Rt ≤ cadt+1, when Rt+1 ≥ cxt+1, according to the induction for period t+ 1

and let ŷt ≤ Rt/c, we have

Πt(yt, Rt) = Gd
t+1(a

d
t+1) + E

[
Ht+1((p− c)min{Dt, yt}+Rt)

]
.

Note that Ht+1(·) is increasing, then we can conclude that Πt(yt, yt) is increasing

in yt when yt ≤ Rt/c. Therefore ŷ
∗
t ≥ Rt/c and it shows Ht(Rt) = Πbr

t (y
∗
t , Rt)−

Gd
t (a

d
t ) when 0 ≤ Rt ≤ cabrt . 2
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Proof of Proposition 1.4.2

Proof. We claim that in period t, the firm is not optimal to salvage down to

the inventory level below Qt/s. This is because when it pays back all the

outstanding loan Ut by salvaging −Ut/s units, she has no incentive to further

salvage since the cash level is already positive at this point. In this sense, we

would prove that given Qt ≥ sast , the optimal salvage-down-to level yst ≤ Qt/s.

The reason is when Qt ≥ sast and let yst = Qt/s, we can decompose the value

function Πs
t(yt, Qt) as follows,

Πs
t(yt, Qt)

= E
[
Vt+1((yt −Dt)

+, pmin{yt, Dt}+ (1 + α)(Qt − syt))
]

= E
[
pmin{yt, Dt}+ (1 + α)(Qt − syt) + c(yt −Dt)

+ +Gd
t+1(max{adt+1, (yt −Dt)

+})
]

= (1 + α)Qt +Gs
t(yt)

Note ast is the maximizer of Gs
t(yt), the above equation implies

dΠs
t (Qt/s,Qt)

dyt
≤ 0.

As mentioned earlier that the optimal salvaged-down-to level should be no less

than Qt/s, we conclude yst = Qt/s in this scenario. 2

Proof of Proposition 1.4.3

Proof. We define z = y − d ≤ (R+ γsx)/c− d, which represents the remaining

inventory level after meeting the current demand. We consider two cases.

Case (a): x − d ≤ z ≤ R+γsx
c

− d, i.e., x ≤ y ≤ R+γsx
c

, meaning the

firm orders inventory at the beginning of period 1. At this point, the optimal
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equation becomes

V1(x, U) = max
x−d≤z≤R+γsx

c
−d

V2

(
z, pd+ (1 + α)(R− cz − cd)

)
.

(a.1) U2 ≥ 0. It requires z ≤ z1 , pd+(1+α)R
(1+α)c

− d. Note x2 = z and

R2 = pd + (1 + α)(R − cd) − αcz and suppose for some z, we have −(1 +

α)c + s + (p − s)F̄ (R2+γsx2

c
) ≤ 0 which implies at period 2 the firm’s optimal

policy is to order products by using his on-hand cash or by collateralizing part

of (not all) the available inventory. Specifically, when s− c+ (p− s)F̄ (x2) ≤ 0

we have y∗2 = x2 and V2(x2, U2) = E[R2 + (s − c)x2 + (p − s)min{x2, D}]. By

calculation, it holds dV2(z,pd+(1+α)(R−cz−cd))
dz

= (p − s)F̄ (x2) − (1 + α)c + s ≤ 0

since we have the range condition s − c + (p − s)F̄ (x2) ≤ 0. This means a

smallest z should be optimal within this range; when s− c+ (p− s)F̄ (x2) ≥ 0

and s−c+(p−s)F̄ (R2

c
) ≤ 0 we have y∗2 = ad2 and V2(x2, U2) = E[R2+(s−c)ad2+

(p− s)min{ad2, D}]; when s− c+(p− s)F̄ (x2) ≤ 0 and s− c+(p− s)F̄ (R2

c
) ≤ 0

we have y∗2 = R2/c and V2(x2, U2) = E[ sR2

c
+ (p − s)min{R2/c,D}]; when

s − c + (p − s)F̄ (x2) ≥ 0 and s − (1 + α)c + (p − s)F̄ (R2+γsx2

c
) ≤ 0 we have

y∗2 = abr2 and V2(x2, U2) = E[(1+α)R2+(s−c−αc)abr2 +(p−s)min{abr2 , D}]. Note

that for all these z in different range, the optimal value V2 increases in the equity

level R2 = pd + (1 + α)(R − cd) − αcz which however is a decreasing function

of z. Therefore we conclude that the optimal z∗ should take the smallest value

within the range −(1 + α)c+ s+ (p− s)F̄ (R2+γsx2

c
) ≤ 0.

On the other hand, for other z ∈ [x−d, R+γsx
c

−d], it should be −(1+α)c+

s + (p − s)F̄ (R2+γsx2

c
) ≥ 0 which indicates that the firm’s optimal policy is to

order by using up all the equality under the inventory-based financing. At this

point, we have y∗2 = R2+γsx2

c
and V2(x2, U2) = E[(1+α)R2+(s−c−αc)R2+γsx2

c
+
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(p− s)min{R2+γsx2

c
, D}]. By calculation it follows,

dV2(z, pd+ (1 + α)(R− cd− cz))

dz

= (
∂V2

∂x
− (1 + α)c

∂V2

∂u
)(z, pd+ (1 + α)(R− cd− cz))

=
p− s

c
(γs− αc)F̄ (

pd+ (1 + α)(R− cd) + (γs− αc)z

c
)− (αγs+ αs+ γs− s

c
γs)

For convenience, denote the condition 0 ≤ αγs+αs+γs−γs2/c
(p−s)(γs−αc)/c

≤ 1 as

(*). If (*) holds, the interior optimal solution z0 should satisfy

F̄ (pd+(1+α)(R−cd)+(γs−αc)z0

c
) = αγs+αs+γs−γs2/c

(p−s)(γs−αc)/c
. Also note that (1+α)c−s

p−s
≤

αγs+αs+γs−γs2/c
(p−s)(γs−αc)/c

, which means for such z0, it holds −(1 + α)c + s + (p −

s)F̄ (R2+γsx2

c
) ≥ 0. Otherwise if (*) breaks down, it is easy to check the above

derivative is less then 0 which indicates a smallest z∗ within the range.

(a.2) U2 ≤ 0 and U2+γsx2 ≥ 0. Then we have z1 ≤ z ≤ z2 , pd+(1+α)(R−cd)
(1+α)c−γs

.

Suppose for some z, it holds that −αs+(p−s)F̄ (Q2

s
) ≤ 0 where Q2 = pd+(1+

α)(R − cd) + (s− αc− c)z, which means at period 2 the firm’s optimal policy

is to pay back all the loan outside by salvaging some on-hand inventory. At

this point, we have y∗2 = Q2/s and V2(x2, U2) = E[Q2 + (p − s)min{Q2/s,D}]

implying that the optimal Q2 should be as large as possible, leading to z∗ as

small as possible in this range; if −αs + (p − s)F̄ (Q2

s
) ≥ 0 and −αs + (p −

s)F̄ (x2) ≤ 0 holds, meaning that at period 2 the firm’s optimal policy is to

salvage down to a certain level asr2 . At this point, y∗2 = asr2 and V2(x2, U2) =

E[(1 + α)Q2 − αsasr2 + (p− s)min{asr2 , D}], which also implies a smallest z∗; if

−αs+(p−s)F̄ (x2) ≥ 0 and−(1+α)c+s+(p−s)F̄ (x2) ≤ 0 follows, meaning that

at period 2 the firm’s optimal policy is to keep the inventory level at y∗2 = x2.

At this point, y∗2 = x2 and V2(x2, U2) = E[(1+α)U2+ sx2+(p− s)min{x2, D}].

By calculation, it holds dV2(z,pd+(1+α)(R−cz−cd))
dz

= (p−s)F̄ (x2)−(1+α)2c+s ≤ 0
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since −(1+α)c+ s+ (p− s)F̄ (x2) ≤ 0, implying a smallest z∗ in the range; for

the rest of z, we have −(1 + α)c+ s+ (p− s)F̄ (x2) ≥ 0 and the firm’s optimal

policy at period 2 is to order additional inventory. As in Case 2, when (*) holds,

we might have a non-boundary optimal solution z∗ = z0 (note when γs ≥ αc,

R+γsx
c

≤ z2); otherwise z∗ should take the smallest boundary solution in this

range. With these observations we conclude that if condition (*) is satisfied and

y0 ≥ y1, y
∗ = min{y0, R+γsx

c
}, otherwise we have y∗ = min{y1, R+γsx

c
}.

(a.3) U2 + γsx2 ≤ 0. Then we have z ≥ z2. According to the requirement

of the minimal collateral, the firm has to salvage some inventory to pay back

the outstanding loan. After salvaging the minimum quantity, period 2’s optimal

value function becomes V2(
U2+x2s
(1−γ)s

, −γsx2−γU2

1−γ
). Since at this time V2 increases in

Q2 = U2 + sx2 while Q2 is decreasing function of z, z∗ should be the smallest

one in this range, e.g., z∗ = z2. Combine the above three cases, we conclude

that if y0 ≥ x holds and condition (*) is satisfied, we have y∗ = min{y0, R+γsx
c

};

otherwise y∗ = x.

Case (b): max{Q/s − d, 0} ≤ z ≤ x − d, i.e., Q/s ≤ y ≤ x. This is the

situation in which the firm chooses to salvage. Then the optimal value equation

becomes

V1(x, U) = max
max{Q/s−d,0}≤z≤x−d

V2

(
z, (p− s− αs)d+ (1 + α)Q− (1 + α)sz

)
(b.1) U2 ≥ 0. Then we have z ≤ (p−s−αs)d+(1+α)Q

(1+α)s
, z3. Because U2 ≥ 0,

the firm should never salvage inventory in period 2, making the optimal value

V2 only related with x2 = z and R2 = (p− s−αs)d+ (1+α)Q+ (c− s−αs)z.

Note c ≥ (1 + α)s, thus z∗ should take the largest value in the range, e.g.,

z∗ = min{x− d, z3} and y∗ = min{x, pd+(1+α)Q
(1+α)s

}.
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(b.2) U2 ≤ 0 and U2 + γsx2 ≥ 0. We have z3 ≤ z ≤ (p−s−αs)d+(1+α)Q
(1+α)s−γs

,

z4. Suppose for some z, it holds that −αs + (p − s)F̄ (Q2/s) ≤ 0, e.g., z ≤
(p−s−αs)d+(1+α)Q−sF−1( p−s−αs

p−s
)

αs
, z5. At this point, y∗2 = Q2/s and V2(x2, U2) =

E[Q2 + (p − s)min{Q2/s,D}], leading to z∗ as small as possible; if −αs +

(p − s)F̄ (Q2/s) ≥ 0 and −αs + (p − s)F̄ (x2) ≤ 0 hold, e.g., z ≥ z5 and z ≥

F−1(p−s−αs
p−s

) , z6, z
∗ should also take the smallest value, e.g., z∗ = max{z5, z6};

if for other z, such that −αs+(p−s)F̄ (x2) ≥ 0 and −(1+α)c+s+(p−s)F̄ (x2) ≤

0, e.g., F−1(p−c−αc
p−s

) , z7 ≤ z ≤ z6, y
∗
2 = x2 and V2(x2, U2) = E[(1+α)U2+sx2+

(p − s)min{x2, D}]. By calculation, we have dV2(z,(p−s−αs)d+(1+α)Q−(1+α)sz)
dz

=

−(1 + α)2s+ s+ (p− s)F̄ (x2) and suppose V2 reaches its local optimal at z1 in

this range, where z7 ≤ z1 , F−1(z)
(p−(1+α)2s)

p−s

)
≤ z6. Then z∗ should be z1 in

this range; for other z ≤ z7, we have −(1 + α)c+ s+ (p− s)F̄ (x2) ≥ 0. At this

point, the optimal value V2 is related with R2 and x2. Note R2 and x2 are both

increasing in z, leading to the largest z∗ in this range, e.g., z∗ = z7. With these

observations, we conclude:

if z5 ≥ z3, it holds that z6 ≤ z3 ≤ z5. This leads to z∗ = min{x − d, z3}

and y∗ = min{x, pd+(1+α)Q
(1+α)s

}; if z5 ≤ z3, (a) z∗ = min{x − d, z3} and y∗ =

min{x, pd+(1+α)Q
(1+α)s

} if z1 ≤ z3; (b) z
∗ = min{x− d, z1} and y∗ = min{x, z1+ d} if

z3 ≤ z1 ≤ z4; (c) z
∗ = min{x−d, z4} and y∗ = min{x, (p−γs)d+(1+α)Q

(1+α)s−γs
} if z1 ≥ z4.

(b.3) U2 + γsx2 ≤ 0. We have z ≥ (p−s−αs)d+(1+α)Q
(1+α)s−γs

. In this case it is

obvious that z∗ = (p−s−αs)d+(1+α)Q
(1+α)s−γs

in this range.

Finally, combining (a) and (b) together, and note that given x and U , the

value function V2

(
(y − d)+, pmin{y, d}+ (U + s(x− y)+ − c(y − x)+)+ − (1 +

α)(c(y − x)+ − U − s(x − y)+)+
)
is concave in y within the constraint range,

we can verify that the stated property holds. 2
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2.1. Introduction

Quick response (QR) strategy has become increasingly popular and proved to be

effective in solving supply chain mismatches. Originally, QR was developed as

an inventory management strategy with the idea to respond quickly to market

changes by cutting the lead time (Iyer and Bergen, 1997). Nowadays, with the

advance in many new technologies such as RFID systems and big data analysis,

QR system is widely employed in many kinds of industries over the world, from

fast fashion industry to consumer electronics (Choi and Sethi, 2010). Generally

speaking, the essence of this strategy is the short production and distribution

lead time which enables the firm to take advantage of the market updates.

This kind of benefit has been deeply studied by numerous researchers and in

practice it helps firms adjust their inventory levels and thus to better match

the supply with uncertain demand. On the other hand, capital constraint or

cash turnover may play a vital role when such a firm implementing the quick

response techniques. In view of this, some firms make the agreement with their

upstream partners for the permission of trade credit financing, which refers to

the credit extended to the firm for the purchase of products. In the fast fashion

industry, some local Spanish, Portuguese and Moroccan manufactures grant

Zara 60 days of trade credit when making their deals (Tycoon Playbook, 2013).

When combining this advantage with the fact that Zara receives its cash either

at the time of a retail sale, or within a week if it was a credit card purchase, you

can appreciate the tremendous cash float it enjoys. Imagine we consider a firm

employing QR strategy is not as powerful and affluent as Zara in the industry,

like a small firm lacking sufficient bargaining power and outsourcing expediting

orders from a third-party. For example, Huawei Technology Company, a Chinese
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networking service provider, sold the product under a relatively low bargaining

power and outsourced some of the components in its early stage. It seems that

he should grab more advantage of both quick response flexibility and trade

credit financing if possible. Nevertheless we find this is not always the case

for such a firm when the upper level manufacturer/supplier can manipulate the

wholesale price in their business relationship.

Conventional wisdom tells us that with an exogenous wholesale price, the

retailer will be better off under either quick response or trade credit system.

Nevertheless, when the wholesale price is not given, the situation is quite dif-

ferent. Because of the intricacies of noncooperative Stackellberg games under

uncertain demand, it is unclear which selling system would yield a higher profit

for the manufacturer or the retailer in equilibrium. When comparing the equi-

librium outcomes under four different systems, we formalize our understanding

for several intuitive results. For example, from the manufacturer’s perspective,

the trade credit system benefits him most because under such a system the

retailer is likely to order more in the regular period and also the manufacturer

can completely control the trade credit financing by setting a proper wholesale

price. In this sense, the retailer will conversely become worst under TC system.

However, we also find some counterintuitive results: (a) from the manufactur-

er’s perspective, when the retailer’s relative budget is high, the manufacturer

can be worst under quick credit system when compared with other three sys-

tems; and (b) from the retailer’s perspective, when her relative budget is low,

the traditional system will dominate all of three other selling systems; and (c)

under some circumstances more ordering opportunity can be detrimental – the

retailer can be worse off under TQ system than under QR system. We can

attribute these unexpected results to the complexity of the decentralized struc-



www.manaraa.com

Chapter 2. When Quick Response Meets Trade Credit 49

ture. In addition, the spirit behind these results is in line with the findings of a

two-level supply chain game under the advanced selling setting with uncertain

demand and supply (Cho and Tang, 2010).

The rest of this article is organized as follows. In the next section, we review

related literature. In Section 3.3, we introduce the two-level Stackellberg game

under different selling systems. Section 2.4 provides the detailed analysis and

solves the game and then Section 2.5 compares the manufacturer’s and retailer’s

profits under different systems. Section 2.6 presents the numerical experiment

and the managerial insights behind the analytical results. Section 2.7 extends

the basic model to the case where the retailer is allowed to default. Finally, this

paper is concluded in Section 2.8.

2.2. Literature Review

As discussed in the previous section, there are tremendous efforts in studying

the quick response strategy in the field of operations management and we refer

readers to a few research papers. Fisher and Raman (1996), Eppen and Iyer

(1997), Iyer and Bergen (1997), Fisher et al. (2001) all consider the benefits of

reducing supply-demand mismatches by providing the firm with an option to

order inventory when the demand information is updated. Gurnani and Tang

(1999) examine the case where the unit cost at the regular period is certain while

this cost at the second instant is uncertain. They evaluate the tradeoff between

a more accurate demand forecast and a potentially high unit cost for the second

instant. Donohue (2000) investigates how retailer’s quick response strategy and

return policy can achieve the channel coordination. More recent works, for

example, Li and Ha (2008) and Caro and Mart́ınez-de-Albéniz (2010) address
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the impact of competition on quick response inventory management. Lin and

Parlaktürk (2012) consider a two-retailer-one-manufacturer game when none,

only one, and both of the retailers have QR ability. They show it is optimal

for the manufacturer to offer QR capability to only one of the ex ante identical

retailers when demand variability is sufficiently but not overly high. Cachon

and Swinney (2009, 2011) do address the issue of how quick response influences

the strategic consumer behavior. Serel (2012) studies a multi-product quick

response system under retailer’s budget constraint. But they do not consider

the participation of the upstream supplier and the adoption of trade credit. For

a comprehensive review on QR strategy, readers are referred to Choi and Sethi

(2010).

Trade credit literature is broad and multidisiplinary, and for broad litera-

ture on economics and finance of it see Burkart and Ellingsen (2004), Giannetti

et al. (2011), and reference there. In the area of operations management, we

review the relevant works closest to ours that is modeled in a newsvendor set-

ting. Zhou and Groenevelt (2007) analyze two financing schemes with credit

line limits: a trade credit scheme with no early payment discount and a supplier

subsidizes bank financing. In their model, the supplier’s trade credit is only de-

termined by the wholesale price and they show that the firm prefers bank credit

to trade credit. Kouvelis and Zhao (2011) study different types of bankrupt-

cy costs on the optimal wholesale price. In the following work, Kouvelis and

Zhao (2012) examine the optimal trade credit scheme by choosing both interest

rates and wholesale price. They show under optimal trade credit contracts,

both the supplier’s profit and supply chain efficiency improve and the retailer’s

profit might be worse when compared to the bank financing scheme. Jing et

al. (2012) study the financing equilibrium between trade credit financing and
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bank credit financing in a channel where the retailer is capital - constrained.

Jing et al. (2013) investigate the roles of bank credit and trade credit in a sup-

ply chain with a capital-constrained retailer under the case of both asymmetric

information and moral hazard.

Our work is also related to the prior studies of two-level supply chain man-

agement where the manufacturer offers an only wholesale price contract to the

retailer. In literature, there are hundreds of works studying this kinds of frame-

work and here we just review two of them: Lariviere and Porteus (2001) serves

a fundamental block for the development our model structure and Cho and

Tang (2013) provides us the inspiration when we develop our managerial in-

sights. Specifically, in the former one, the authors examine the determinants

of the optimal wholesale price, the efficiency of the supply chain and the divi-

sion of system profit; the latter work explores three selling strategies of a one-

manufacturer-one-retailer supply chain under uncertain supply and demand:

advance selling, regular selling and dynamic selling. They find the retailer can

be worse off under regular selling than under advance selling and what’s more,

dynamic selling by which the retailer has a second ordering opportunity might

be detrimental to her.

In this paper, we intend to study the value of quick response and/or trade

credit in a two-level supply chain in which the manufacturer and the retailer

engages in vertical competition and show the value to each party is not trivial

under different system. We expect this finding may enrich the supply chain

management literature and shed some light on further integration and develop-

ment of supply chain management.
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2.3. The Model

Consider a two-level supply chain that is comprised of one manufacture (”he”)

and one retailer (”she”). The retailer can be considered as, e.g., a fast-fashion

firm who sells the products by using the material produced by the manufacturer

over a short selling season. We assume the manufacturer has unlimited capac-

ity to fulfill the retailer’s demand and its unit production cost is simplified to

zero. For the retailer, she is initially endowed with an on-hand budget level B,

which is used for goods procurement. The market is characterized by demand

uncertainty: the stochastic demand is denoted by random variable D with u-

niform distribution U [0, A], where A is the demand scale. Here we assume the

demand satisfying uniform distribution for two reasons. The first one is for

tractability. Since we formulate the problem in a two-level Stackelberg setting,

a general distribution assumption for this ”newsvendor” game could much com-

plicate the analysis. In order to partially generalize our results, we verify the

robustness of our analytical results by using a truncated normal distribution in

the numerical section. The second reason is the uniform distribution by which

we can derive the desired insights has the advantage of being easily understood

by the manager (Taylor, 2002).

We consider the following four selling systems:

(1) Traditional system, abbreviated T , represents a retailer can neither take

advantage of a quick response strategy nor a trade credit scheme. Under this

system, firstly the manufacturer charges the retailer the unit wholesale price

wT , then the retailer determines the regular ordering quantity qT . When the

selling seasons begins, the retailer sells the product at a given market price p.

Note this is a typical two-level newsvendor setting under budget constraint.
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(2) Trade credit system, abbreviated TC, means the retailer is granted

a chance to delay her payment to the manufacturer for her regular ordering.

Like the traditional one, under TC system, the retailer has only one ordering

opportunity before demand realization. When the retailer actually uses the

trade credit, we assume she might default on the remaining portion of the

credit if her entire revenue at the end of the second season is not enough to

pay back the manufacturer’s loan. This is a common assumption for the trade

credit literature, see (Kouvelis and Zhao, 2011) and (Bing et al., 2012). We also

consider the case when the retailer is not allowed to default in the extension

part. Note here we consider the optimal trade credit scheme by manufacturer’s

choosing only ex post wholesale price wT (Bing et al., 2012), instead of the

combination of both wholesale price and loan interest rate (Kouvelis and Zhao,

2011). This is a simplified version of trade credit contract, which actually is

sufficient to manifest our insights.

(3) Quick response system, abbreviated QR, means the retailer is granted

an additional ordering opportunity after demand is realized. That is, the retailer

can make an expediting order from an outstanding player (e.g., a third party

provider) at a fixed price e, where we assume e < p representing it is profitable

for this procurement. Since we do not focus on the demand updating in the

second ordering period (Iyer and Bergen, 1997), we just simplify the expediting

price e as a predetermined parameter. For both the regular and expediting

ordering, the retailer is constrained by her initial budget B. Here we assume

the third party has no long relationship with the retailer thus he requires an

instant payment without any delay payment even for a known coming demand.

(4) Quick credit system, abbreviated TQ, means the retailer is able to

employ both the quick-response and trade-credit flexibility. Under this system,



www.manaraa.com

Chapter 2. When Quick Response Meets Trade Credit 54

the retailer can not only delay the payment to the manufacturer for the regular

procurement, but also own the expediting ordering chance when the demand

is realized. As we mentioned in the QR system, for the expediting ordering,

the retailer has to pay the expediting order by her initial endowment, rather

than by any other credit or any revenue collected by the upcoming sales. In

addition, we assume B ≤ Ae, which represents the retailer’s initial endowment

is not enough so that she cannot order as much as she needs in the regular

period, thus might rely on trade credit scheme to finance her procurement.

We model the problem as a two-level Stackelberg game, where the manu-

facturer sets the wholesale price as the leader and the retailer determines the

order quantity as the follower. The summary of the notation is as follows:

exogenous parameters:

D = stochastic demand;

B = initial endowment owned by the retailer;

e = unit expediting ordering cost;

p = unit sales price, assume that p > e;

decision variables:

w = unit wholesale price;

q = regular order quantity (before the demand is realized);

2.4. Equilibrium Analysis

In this section, we use backward induction to derive subgame-perfect Nash equi-

librium under different selling systems. Under each system, the manufacturer

firstly sets the wholesale price w, and then the retailer makes the regular or-

dering decision q. Under both QR and TQ system where there is a second
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ordering opportunity, the retailer can make the expediting order by using her

own remaining endowment.

2.4.1. Tradition System

Given the regular wholesale price wT in the regular period, the retailer’s objec-

tive is to maximize her expected profit by choosing an order quantity qT under

the budget constraint,

ΠT
R =

∫ qT

0

(B + pD − wT qT )
1

A
dD +

∫ A

qT

(B + pqT − wT qT )
1

A
dD (2.1)

where qT ≤ B
wT

. In the first step, we ignore the constraint of qT and take the

derivative of qT in (2.1):

qT = A(1− wT

p
)

As one would expect, without budget constraint, the retailer’s regular ordering

quantity qT decreases in the wholesale price wT . For the manufacturer, in

anticipation of the retailer’s ordering decision, he sets the wholesale price to

maximize his expected profit:

max
wT

ΠT
M = wT qT = wTA(1−

wT

p
) (2.2)

Then, the optimal wholesale price charged is w∗
T = p

2
and the corresponding

optimal regular order quantity should be q∗T = A
2
. In addition, we derive the

optimal manufacturer’s profit

ΠT ∗

M =
Ap

4
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and the retailer’s expected profit

ΠT ∗

R = B +
Ap

8

The above results hold under the condition that B ≥ w∗
T q

∗
T = Ap

4
. Denote

B
Ap

, y as the measure of retailer’s relative budget capability. It is observed

that B is positively related to y whereas A and p are negatively related to

y. Note another ratio B
Ae

can also act in a similar manner and we will use it

sometimes in the later analysis. When B < Ap
4

which means the retailer is not

wealthy enough to secure the optimal unconstrained regular order, she has to

procure the maximal quantity by using up her on-hand account, e.g., q∗T = B
wT

.

Particularly, as long as A(1− wT

p
) ≥ B

wT
, the retailer will optimally order up to

qT = B
wT

and the manufacturer can only obtain a constant profit B for such a

wT , where wT s.t., A(1− wT

p
) ≥ B

wT
. Among these wholesale prices, we assume

the manufacturer choose the least expensive one w1, where w1 is smallest in the

above range, e.g., w1 =
p
2
−
√

p2

4
− Bp

A
. Under w1, the retailer will benefit most

and the whole supply chain achieves a Pareto optimal equilibrium.

Proposition 2.4.1. Under traditional system (T), given retailer’s relative bud-

get y = B
Ap
, (i) if B

Ap
≤ 1

4
, then w∗

T = p
2
−

√
p2

4
− Bp

A
, q∗T = A

2
+

√
A2

4
− AB

p
,

ΠT ∗
M = B and ΠT ∗

R = B
2
+ Ap

4
+ A

2

√
p2

4
− Bp

A
;

(ii) if B
Ap

> 1
4
, then w∗

T = p
2
, q∗T = A

2
, ΠT ∗

M = Ap
4

and ΠT ∗
R = B + Ap

8
;

(iii) ΠT ∗
R decreases in y when 0 ≤ y ≤ 1

4
and increases in y when y ≥ 1

4
.

From this proposition, it can be seen the equilibrium is divided into two

parts: when y is rather small the manufacturer cannot gain more than the retail-

er’s budget B while when y increases to a threshold, he obtains a non-constraint

profit less than B. In addition, when Ap is fixed the retailer’s expected profit
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firstly decreases in y until it reaches 1
4
, and then increases as y grows. This

is because under the Pareto criteria when y ≤ 1
4
, the manufacturer’s optimal

wholesale price increases as B grows. This effect is negative to the retailer and

thus fully offsets the B’s incremental effect, leading to a decreasing expected

profit ΠT ∗
R . When y grows to 1

4
, the optimal wholesale price keeps at a constant

level and the retailer’s expected profit increases as y increases.

2.4.2. Trade Credit System

The main difference between the traditional system and the trade credit system

lies on the budget constraint during the first period. Under TC system, the

retailer will not subject to the budget constraint for the regular ordering. Since

the retailer is allowed to default, she will repay the debt as much as she could

at the end of horizon, e.g., min{B + pD,wTCqTC}. When B + pD < wTCqTC ,

which means the realized revenue is not sufficient to cover the overall debt,

she will claim zero capital left and leave part of her loan unpaid. Because

of this, firstly we consider the case that the retailer orders a high quantity

qTC > B
wTC

meaning she takes the advantage of trade credit financing and faces

some potential default risk. Under this scenario, the retailer’s expected profit

can be expressed as the following,

ΠTC
R =

∫ wTCqTC−B

p

0

0
1

A
dD +

∫ qTC

wTCQTC−B

p

(B + pD − wTCqTC)
1

A
dD

+

∫ A

qTC

(B + pqTC − wTCqTC)
1

A
dD (2.3)
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Using the first order condition, we have

q∗TC =
Ap(p− wTC)−BwTC

p2 − w2
TC

(2.4)

and the manufacturer’s corresponding expected profit is

ΠTC
M =

∫ wTCq∗TC−B

p

0

(B + pD)
1

A
dD +

∫ A

wTCq∗
TC

−B

p

wTCq
∗
TC

1

A
dD

= wTCq
∗
TC − (wTCq

∗
TC −B)2

2Ap
(2.5)

Notice the manufacturer’s expected profit is always less than wTCq
∗
TC , which

means he should bear some loss whenever the retailer cannot repay all the

credit. Denote wTCq
∗
TC = B + x and the new variable x(≥ 0) represents the

trade-credit line the retailer actually uses. Note x is not necessarily of one-to-

one relationship with wTC . Next we will consider the case qTC ≤ B
wTC

where the

firm does not turn to trade credit financing in the regular period.

Proposition 2.4.2. Under trade credit (TC) system, (i) if y = B
Ap

≤ 1
4
, then

w∗
TC = p

1+y+
√

y2+2y
, q∗TC = A

2
, ΠTC∗

M = B + x1 − x2
1

2Ap
and ΠTC∗

R = B + Ap
8
−

(
x2
1

2Ap
+ Bx1

Ap
), where x1 =

1−y−
√

y2+2y

2
Ap;

(ii) if B
Ap

> 1
4
, then w∗

TC = p
2
, q∗TC = A

2
, ΠTC∗

M = Ap
4

and ΠTC∗
R = B + Ap

8
;

(iii) when Ap is fixed, ΠTC∗
M decreases in y while ΠTC∗

R increases in y.

Proof. See the Appendix. 2

When the retailer is not that wealthy, e.g., B
Ap

≤ 1
4
, she will optimally rely

on some trade credit financing which increases the default risk if the realized

demand is low. For the manufacturer who is facing this rather poor retailer,

he has to shoulder all the financial risk, resulting in a relatively high wholesale
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price to compensate the increasing default risk. This finding is in line with

the previous result that under TC system the optimal w∗
TC = p in Jing et al.

(2012). Meanwhile, it is observed that when fixed Ap the retailer’s expected

profit increases in y while the manufacturer’s expected profit decreases in y.

This can be verified from the following relationship,

ΠTC∗

R = B +
Ap

8
− (

x2
1

2Ap
+

Bx1

Ap
) =

3Ap

8
+

x2
1

2Ap
− x1

ΠTC∗

M = B + x1 −
x2
1

2Ap
=

Ap

4
+

Bx1

Ap
+

x2
1

2Ap
,

where the former expected profit increases in y whereas the latter deceases in y

when y ≤ 1
4
. This is because under TC system, the manufacturer’s capability to

exploit the surplus is weaken when the retailer becomes richer. As the retailer

becomes more wealthy, e.g., B
Ap

≥ 1
4
, trade credit financing brings no effect on

the retailer’s ordering decision since she is not necessary to borrow from the

manufacturer in the first period. Without considering trade credit financing,

TC system becomes the traditional one, under which the optimal wholesale

price w∗
TC and order quantity q∗TC are independent with the retailer’s budget

level B. Finally from the manufacturer’s perspective, under this TC system, he

will earn at least the profit at the non-constrained optimal level AP
4
.

2.4.3. Quick Response System

Under quick response system, the retailer is granted an additional ordering

opportunity after the demand is realized by her initial budget. Given wQR, her
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expected profit should be,

ΠQR
R =

∫ qQR

0

(B + pD − wQRqQR)
1

A
dD +

∫ qQR+
B−wQRqQR

e

qQR

(
B + pD − wQRqQR

− e(D − qQR)
) 1
A
dD +

∫ A

qQR+
B−wQRqQR

e

p
(
qQR +

B − wQRqQR

e

) 1
A
dD (2.6)

where qQR ≤ B
wQR

. Take the derivative of qQR in (2.6),

qQR∗ =
p− pwQR/e−B(p− e)(e− wQR)/Ae

2

e/A+ (p− e)(e− wQR)2/Ae2

For the manufacturer, his expected profit is

max
wQR

ΠQR
M = wQRqQR∗ = wQR

p− pwQR/e−B(p− e)(c− wQR)/Ae
2

e/A+ (p− e)(e− wQR)2/Ae2

Then, we derive the optimal wholesale price w∗
QR =

√
re√
r+1

< e, where r = p/e >

1 means the ratio of the unit sale revenue to the unit expediting cost. The

higher this ratio, the more profitable when adopting the QR strategy since the

expediting ordering cost becomes relatively cheap. Based on w∗
QR, the retailer’s

optimal order quantity q∗QR = A(r−(r−1)B/Ae)
2
√
r

and the corresponding optimal

expected profit for each player is,

ΠQR∗

M =
Ae(r − (r − 1)B/Ae)

2(
√
r + 1)

ΠQR∗

R =
(1−

√
r)(

√
r + 1)2

4
√
r

B2

Ae
+

1

2
(r +

√
r)B +

r3/2

4(
√
r + 1)

Ae
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Note for this pair of w∗
QR and q∗QR, it requires the boundary condition q∗QR +

B−w∗
QRq∗QR

e
≤ A, e.g., B

Ae
≤ r+2

√
r

r+2
√
r+1

. If B
Ae

> r+2
√
r

r+2
√
r+1

, the retailer should order

up to q0QR, s.t., q
0
QR maximizes the following,

ΠQR
R =

∫ qQR

0

(B + pD − wQRqQR)
1

A
dD +

∫ A

qQR

(B + pD − wQRqQR − e(D − qQR))
1

A
dD

Note we will not include this case in our following analysis since the corner

solution is not interesting enough. Therefore we focus on the scenario that the

retailer is not that rich: B
Ae

≤ r+2
√
r

r+2
√
r+1

. In addition, to obtain a non-capital-

constrained solution, we impose the condition B ≥ w∗
QRq

∗
QR, e.g.,

B
Ap

≥ 1
r+2

√
r+1

.

Otherwise, if the on-hand cash B is not that sufficient, e.g., B
Ap

< 1
r+2

√
r+1

, the

retailer should order up to B
wQR

in the regular period and then order nothing

during the second instant. Put another way, given wQR, as long as

p− pwQR/e−B(p− e)(e− wQR)/Ae
2

e/A+ (p− e)(e− wQR)2/Ae2
≥ B

wQR

,

We have q∗QR = B
wQR

. Denote w∗
QR , w2 as the smaller root of equation

p− pwQR/e−B(p− e)(e− wQR)/Ae
2

e/A+ (p− e)(e− wQR)2/Ae2
=

B

wQR

(2.7)

For a Pareto optimal solution, the manufacturer should set the least expensive

wholesale price w∗
QR = w2. It is easy to check w2 > B

A
so the corresponding

optimal order quantity B
w∗

QR
does not exceed the upper bound A. Thus we have,

Proposition 2.4.3. In this quick response (QR) system, suppose 0 < B
Ap

≤
1+2/

√
r

r+2
√
r+1

. (i) if B
Ap

≤ 1
r+2

√
r+1

, then w∗
QR = w2, q∗QR = B

w2
, ΠQR∗

M = B and

ΠQR∗

R = − p
2A
(A − q∗QR)

2 + Ap
2
, where w2 is the smaller root of the equation

(2.7); (ii) if 1
r+2

√
r+1

< B
Ap

≤ 1+2/
√
r

r+2
√
r+1

, then w∗
QR =

√
re√
r+1

, q∗QR = A(r−(r−1)B/Ae)
2
√
r

,
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ΠQR∗

M = Ae(r−(r−1)B/Ae)
2(
√
r+1)

and ΠQR∗

R = (1−
√
r)(

√
r+1)2

4
√
r

B2

Ae
+ 1

2
(r +

√
r)B + r3/2

4(
√
r+1)

Ae;

(iii) ΠQR∗

R decreases when 0 < B
Ap

≤ 1
r+2

√
r+1

and then increases when 1
r+2

√
r+1

≤
B
Ap

≤ 1+2/
√
r

r+2
√
r+1

; (iv) ΠQR∗

M increases when 0 < B
Ap

≤ 1
r+2

√
r+1

and then decreases

when 1
r+2

√
r+1

≤ B
Ap

≤ 1+2/
√
r

r+2
√
r+1

;

When the retailer is not so rich, e.g., y ≤ 1
r+2

√
r+1

, she should order-up-to

a level by using up all her endowment during the regular period. Under this

scenario, the retailer cannot make any expediting ordering as the traditional

system. We leave the comparison between QR and T in the later discussion.

Before y reaches the level 1
r+2

√
r+1

, the retailer’s expected profit decreases as y

grows. This is because the retailer will face a higher wholesale price while enjoy

no benefit of QR capability in the second period. The higher w∗
QR results in a

smaller q∗QR and a correspondingly decreasing ΠQR∗

R . This finding is consistent

with the decreasing ΠT ∗
R for y ≤ 1

4
under traditional system. When the retailer

becomes richer, e.g., 1
r+2

√
r+1

< B
Ap

≤ 1+2/
√
r

r+2
√
r+1

, she can actually adopts the

expediting chance in the second period. When the relative budget increases, the

advantage of demand updating in the second period eventually outweighs the

inefficiency caused by the the costly expediting cost e, leading QR capability

largely improves the retailer’s profitability. For the manufacturer, conversely

his expected profit increases at first and then decreases then. This can be

interpreted as the fact that after a certain threshold a more sufficient retailer’s

budget is detrimental to the manufacturer since the retailer can take more

advantage of the QR strategy.
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2.4.4. Quick Credit System

This is a system combined with quick response flexibility and trade credit ca-

pability. Given wTQ and we first assume the retailer orders a regular quantity

qTQ, s.t., wTQqTQ ≥ B. Then her optimal expected profit is,

ΠTQ
R =

∫ wTQqTQ−B

p

0

0
1

A
dD +

∫ qTQ

wTQQTQ−B

p

(B + pD − wTQqTQ)
1

A
dD

+

∫ qTQ+B
e

qTQ

(
B + pD − wTQqTQ − e(D − qTQ)

) 1
A
dD +∫ A

qTQ+B
e

(
p(qTQ +

B

e
)− wTQqTQ

) 1
A
dD (2.8)

Using the first order condition, we have

q∗TQ =
Ap2 − ApwTQ −Bp(r − 1)−BwTQ

p2 − w2
TQ

(2.9)

and the manufacturer’s expected profit should be,

ΠTQ∗
M = wTQq

∗
TQ −

(wTQq
∗
TQ −B)2

Ap
(2.10)

Proposition 2.4.4. Under quick credit (TQ) system, suppose 0 < B
Ap

≤ 1
1+r

,

(i) if B
Ap

≤ 1
r+2

√
r+1

, then w∗
TQ = (1+y−yr)p

1+y+
√

2yr−y2r2+2y2r
, q∗TQ = (1+y−yr)A

2
,

ΠTQ∗

M = B + z1 − z21
2Ap

and ΠTQ∗

R = −3r2+2r+1
8

B2

Ap
+ (1

4
+ 3r

4
)B + Ap

8
, where

z1 =
1−y−

√
2yr−y2r2+2y2r

2
Ap; (ii) if 1

r+2
√
r+1

< B
Ap

≤ 1
1+r

, then wTQ∗ = (1+y−yr)p
2

,

qTQ∗ = (1+y−yr)A
2

, ΠTQ∗

M = A
4p

(
p− (p−e)B

Ae

)2
and ΠTQ∗

R = −3r2+2r+1
8

B2

Ap
+(1

4
+ 3r

4
)B+

Ap
8
; (iii) ΠTQ∗

M decreases in y while ΠTQ∗

R increases in y.

Proof. See the Appendix. 2
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When the retailer is not wealthy, e.g., y ≤ 1
r+2

√
r+1

, she will be exposed to

some default risk, just as the situation she counters under TC system. In view

of this, the manufacturer will set an aggressive wholesale price to compensate

this financial risk, which leading to an increasing w∗
TQ as y grows. Even with

this less expensive wholesale price, the retailer orders less in the first period due

to the availability of the extra ordering opportunity. On the other hand, when

y ≤ 1
r+2

√
r+1

it shows w∗
TQ ≤ w∗

TC and q∗TQ ≤ q∗TC when compared with TC

system. This can be explained that both players act in a more conservative way

when both QR and TC become available. In addition, as we explain for TC

system, the manufacturer’s capability to exploit the retailer’s surplus is weaken

when she becomes richer, which resulting in ΠTQ∗

M decreasing in y and ΠTQ∗

R

increasing in y. This is in line with the property (iii) under the TC system.

Furthermore we note this proposition is analogous to Proposition 2.4.3 of QR

system in that under both cases the equilibrium strategy begins to change when

y reaches a threshold 1
r+2

√
r+1

, but the meaning behind it is quite different. In

Proposition 2.4.3, this level of the comparative budget ratio determines whether

the retailer could actually afford the expediting ordering whereas in Proposition

2.4.4, it indicates whether the retailer might default or not under TQ system. In

the next section, we further explore how each player’s optimal expected profit

looks like when compared with each other.
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2.5. Profit Comparison under Different

Selling Systems

Using the equilibrium outcomes derived in the previous section, we now compare

each player’s expected profits under different selling systems (T, TC, QR and

TQ). The following three tables summarize each party’s expected profit with

different relative budget B
Ap
. We assume B

Ap
≤ 1

1+r
to eliminates the corner

solution as in the above analysis. Note when r > 3, the break-even point 1
4
will

occur under neither T nor TC system.

Table 2.1: Optimal Expected Profits when B
Ap

≤ 1
r+2

√
r+1

ΠT ∗
M = B ΠTC∗

M = B + x1 − x2
1

2Ap

ΠT ∗
R = B

2
+ Ap

4
+ A

2

√
p2

4
− Bp

A
ΠTC∗

R = B + Ap
8
− x2

1

2Ap
− Bx1

Ap

ΠQR∗

M = B ΠTQ∗

M = B + z1 − z21
2Ap

πQR∗

R = − p
2A
(A− B

w2
)2 + Ap

2
ΠTQ∗

R = −3r2+2r+1
8

B2

Ap
+ (1

4
+ 3r

4
)B + Ap

8
− z21

2Ap
− Bz1

Ap

Table 2.2: Optimal Expected Profits when 1
r+2

√
r+1

< B
Ap

≤ 1
4

ΠT ∗
M = B ΠTC∗

M = B + x1 − x2
1

2Ap

ΠT ∗
R = B

2
+ Ap

4
+ A

2

√
p2

4
− Bp

A
ΠTC∗

R = B + Ap
8
− x2

1

2Ap
− Bx1

Ap

ΠQR∗

M = Ae(r−(r−1)B/Ae)
2(
√
r+1)

ΠTQ∗

M = A
4p

(
p− (p−e)B

Ae

)2
ΠQR∗

R = (1−
√
r)(

√
r+1)2

4
√
r

B2

Ae
+ 1

2
(r +

√
r)B + r3/2

4(
√
r+1)

Ae ΠTQ∗

R = −3r2+2r+1
8

B2

Ap
+ (1

4
+ 3r

4
)B + Ap

8
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Table 2.3: Optimal Expected Profits when B
Ap

> 1
4

ΠT ∗
M = Ap

4
ΠTC∗

M = Ap
4

ΠT ∗
R = B + Ap

8
ΠTC∗

R = B + Ap
8

ΠQR∗

M = Ae(r−(r−1)B/Ae)
2(
√
r+1)

ΠTQ∗

M = A
4p

(
p− (p−e)B

Ae

)2
ΠQR∗

R = (1−
√
r)(

√
r+1)2

4
√
r

B2

Ae
+ 1

2
(r +

√
r)B + r3/2

4(
√
r+1)

Ae ΠTQ∗

R = −3r2+2r+1
8

B2

Ap
+ (1

4
+ 3r

4
)B + Ap

8

2.5.1. Trade Credit Scheme vs. Quick Response Selling

vs. Quick Credit System

In this part we compare the expected profits under TC, QR and TQ system.

The following theorem summarises the results.

Theorem 2.5.1. Suppose 0 < B
Ap

≤ 1
1+r

, (a) From the retailer’s perspective,

ΠQR∗

R ≥ ΠTQ∗

R ≥ ΠTC∗
R ; (b) From the manufacturer’s perspective, trade credit

system dominates other two systems, and for the other two systems, (i) ΠTQ∗

M ≥

ΠQR∗

M when 0 < B
Ap

≤ 1
r+2

√
r+1

; (ii) ΠQR∗

M ≥ ΠTQ∗

M when 1
r+2

√
r+1

≤ B
Ap

≤ 1
1+r

.

Proof. See the Appendix. 2

Theorem 2.5.1.(a) asserts that from the retailer’s perspective, for any rela-

tive budget level B
Ap
, quick response system dominates quick credit system and

quick credit system dominates trade credit system. We first interpret the latter

part. Compared to TC system, the retailer under TQ system can take advan-

tage of the quick response flexibility, which obviously benefits her more. And

this kind of benefit exists for any budget level due to the trade credit scheme.

Next, for the former part, it seems that under TQ system the trade credit flexi-

bility will bring her some extra advantage when compared with that under QR

system. But this is not the case: for any relative budget level, the retailer will

be better off under QR system than under TQ one. The underlying reason
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is as follows: although the retailer could enjoy the trade credit flexibility, em-

ploying the trade credit scheme under TQ system enables the manufacturer to

better manipulate the wholesale price in the leader-follower game, which on the

contrary eventually harms the retailer’s surplus. This is an interesting finding

since TQ system which combines both the quick response flexibility and trade

credit financing does not necessarily benefit the retailer. The manufacturer’s

first-move advantage will somehow offset the potential value to the retailer un-

der TQ system. We will see a similar result in the following discussion about

the traditional system.

From the manufacturer’s perspective, Theorem 2.5.1.(b) claims that trade

credit system benefits the manufacturer most for any retailer’s relative budget.

This result is due to the following two reasons. First, under trade credit system,

the retailer is likely to order more in the first period since she has no budget

constraint for the regular ordering. More regular orders enable the manufacturer

to extract more surplus from the retailer. Second, a selling system consisting

of the quick response strategy leads the retailer to order less in the regular

period because she is granted a second ordering opportunity after demand is

known. We should notice this expediting ordering advantage brings no direct

benefit to the manufacturer. Thus the quick response flexibility actually causes

some detrimental effect to the manufacturer and he will benefit most under pure

trade credit system which contains no QR flexibility. This result is consistent

with the findings of Kouvelis and Zhao (2012), in which they show trade credit

financing can largely improve the manufacturer’s profit in a two-level supply

chain structure.

It also shows when the retailer is not wealthy, e.g., 0 < B
Ap

≤ 1
r+2

√
r+1

, the

manufacturer is better off under quick credit system than under quick response
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system while if the retailer becomes more wealthy, the relationship between

ΠTQ∗

M and ΠQR∗

M is reversed. We explain this phenomenon as follows: if the

retailer lacks some on-hand budget, under quick credit system the retailer will

order more in the regular period than under QR system, and the manufacturer

can earn more than B under TQ system; when the retailer becomes richer, this

kind of advantage to the manufacturer decreases substantially under TQ system.

Although the manufacturer will experience a similar profit decreasing effect

under QR system, the decreasing magnitude under QR system is more slightly

than that under TQ one because of a cheaper wholesale price which leading to

a larger order quantity in the regular period. In this sense, whether the TQ

system or the QR one benefits the manufacturer more is not straightforward,

but depending on the retailer’s relative budget level.

Corollary 2.5.1. Suppose 1
r+2

√
r+1

< B
Ap

≤ 1
1+r

, for the system’s expected profit

it holds ΠQR∗ ≥ ΠTQ∗
.

The proof is straightforward since ΠQR∗

M ≥ ΠTQ∗

M and ΠQR∗

R ≥ ΠTQ∗

R when

1
r+2

√
r+1

< B
Ap

≤ 1
1+r

. This result sheds some managerial insights because we

should pay attention that under some circumstance combining two distinctive

retailer’s flexibilities is beneficial to neither the manufacturer nor the retailer.

Remark: The analysis about quick response system is based on the as-

sumption that the manufacturer seeks a Pareto equilibrium when setting the

wholesale price. We can see when B is quite small the manufacturer will set

a pretty low wholesale price to induce retailer’s large regular order quantity.

Actually, he can gain the same surplus B with a higher wholesale price. But

this will hurt the retailer’s welfare and results in a non-Pareto equilibrium, so

we should eliminate this scenario in our analysis.
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2.5.2. The Influence of Traditional System

Now we compare the expected profit under traditional system with those under

other three systems.

Theorem 2.5.2. Suppose 0 < B
Ap

≤ 1
1+r

and let l = min{ 1
1+r

, 1
4
}. (a) From

the retailer’s perspective, it holds (i) ΠT ∗
R ≥ max{ΠTC∗

R ,ΠQR∗

R ,ΠTQ∗

R } when 0 <

B
Ap

≤ 1
r+2

√
r+1

; (ii) ΠT ∗
R ≥ ΠTC∗

R when 1
r+2

√
r+1

≤ B
Ap

≤ l; (iii) ΠQR∗

R ≥ ΠTQ∗

R ≥

ΠTC∗
R = ΠT ∗

R when B
Ap

≥ 1
4
. (b) From the manufacturer’s perspective, (i) ΠTC∗

M ≥

ΠTQ∗

M ≥ ΠQR∗

M = ΠT ∗
M when 0 < B

Ap
≤ 1

r+2
√
r+1

; (ii) ΠTC∗
M ≥ ΠT ∗

M ≥ ΠQR∗

M ≥ ΠTQ∗

M

when 1
r+2

√
r+1

≤ B
Ap

≤ l; (iii) ΠTC∗
M = ΠT ∗

M ≥ ΠQR∗

M ≥ ΠTQ∗

M when B
Ap

≥ 1
4
.

Proof. See the Appendix. 2

Theorem 2.5.2. is supplementary to the previous theorem when taking into

account the traditional system. Part (b) about the manufacturer’s expected

profit is under expectation: when B
Ap

is small, under traditional system the

manufacturer can only obtain the retailer’s full endowment B, which equals to

that under QR system but is smaller than that under TC and TQ system; when

B
Ap

increases to a certain level 1
r+2

√
r+1

, the manufacturer can still earn B under

the traditional system however he is not able to extract the whole retailer’s

endowmentB under either QR or TQ system. This is because the quick response

flexibility will weaken the manufacturer’s first-move advantage, which leading

to a larger retailer’s surplus under T system, e.g., max{ΠQR∗

M ,ΠTC∗
M } ≤ ΠT ∗

M ;

when B
Ap

further increases, the traditional system is identical to the TC system,

under which the manufacturer can benefit most as we asserted before. As for the

retailer’s part, the result also relies on the Pareto-optimal prerequisite. Under

this assumption, the analysis of the traditional system is not so intuitive as we
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expect: when the relative budget is low. e.g., 0 < B
Ap

≤ 1
r+2

√
r+1

, the traditional

system will dominate all of the other three selling systems. Recall we have

shown ΠQR∗

R ≥ ΠTQ∗

R ≥ ΠTC∗
R and the question left is why the retailer will prefer

T system to QR one. Given manufacturer’s knowledge that he will optimally

earn the full endowment B, the retailer’s potential flexibility under QR system

will eventually result in an more aggressive wholesale price. Therefore similar

to Theorem 2.5.1.(a) where the retailer will be worse off under TQ system

than under QR system, more flexibility can be detrimental to the retailer when

compared to the traditional system where there is no flexibility! When B
Ap

gets

larger but less than l, the situation is much complicated, the T system may

outweigh the QR system or might be inferior to the TQ system. Here are two

examples:

Example 2.5.1. Consider an instance with y = B
Ap

= 0.18 and r = p
c
= 2, then

ΠT ∗

R ≥ ΠQR∗

R

⇐⇒ 1

2
(r +

√
r − 1)y <

1

4(
√
r + 1)

+
1

2

√
1

4
− y +

√
r(
√
r − 1)(

√
r + 1)2

4
y2

⇐⇒ 0.046 ≥ 0

which follows the relationship ΠT ∗
R ≥ ΠQR∗

R ≥ ΠTQ∗

R .

Example 2.5.2. Consider another instance with y = 1
4
and r = 2, at this time,

ΠTQ∗

R ≥ ΠT ∗

R ⇐⇒ 3r − 1

4
y − 3r2 − 2r − 1

8
y2 − 1

2

√
1

4
− y − 1

8
≥ 0

⇐⇒ 17

128
≥ 0

which implies ΠQR∗

R ≥ ΠTQ∗

R ≥ ΠT ∗
R .
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We can see when the retailer is not rich (y = 0.18), the traditional system

might outweigh the quick response one since at this time the quick response

flexibility cannot bring much benefit to the retailer due to the insufficient budget

and potential Pareto requirement under the traditional system. However if the

retailer becomes richer to a certain level (y = 0.25), even under the trade credit

system could the retailer gain more than that under the traditional system

since the flexibility could bring some actual benefit to the retailer. Furthermore

when y continues to increases, the trade credit scheme cannot affect the retailer’s

decision and TC system is identical to T system.

2.6. Numerical Experiment

We now present numerical experiments to gain further insights with regard

to the manufacturer’s, the retailer’s and the overall system’s expected profit

under different selling systems. In our illustration, we fix the demand scale

A = 5, expediting ordering cost e = 1 and vary the initial endowment B. We

examine two kinds of demand distribution for several instances, one is uni-

form distribution D ∼ U [0, A] and the other is truncated normal distribution

D ∼ N(A/2, 22)|[0, A]. Under each demand distribution, we assume p = 2 and

p = 4 respectively to represent how ”rich” the retailer is, e.g., p = 2 (p = 4) rep-

resenting the retailer is relatively rich (poor) and we vary the initial endowment

B for a certain interval with an increment of 0.1(0.3) for uniform (truncated

normal) demand setting. Also we use ”T”, ”C”, ”R” and ”Q” to represent each

system respectively in the following illustration. As seen in Figure 2.1 and 2.2,

under both demand distributions, the numerical experiment verifies our analyt-

ical results: (a) as B grows, the manufacturer’s expected profit decreases under
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TC and TQ system, increases under T system and first increases then decreases

under QR system; and (b) given a certain threshold t = Ap
r+2

√
r+1

, when B ≤ t,

ΠTC∗
M ≥ ΠTQ∗

M ≥ ΠQR∗

M = ΠT ∗
M and ΠTC∗

M ≥ ΠT ∗
M ≥ ΠTQ∗

M ≥ ΠQR∗

M when B > t.

We also find within our budget interval (B ∼ [0, 4]), ΠT ∗
M will converge to ΠTC∗

M

when p = 2 while for p = 4, ΠT ∗
M is much smaller than ΠTC∗

M for the whole

budget range. This is because when p = 4, the initial endowment to afford the

non-constrained optimal regular ordering is larger than that when p = 2, which

leads to qTC∗
M > qT

∗
M and ΠTC∗

M > ΠT ∗
M correspondingly.
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Figure 2.1: Manufacturer’s Expected Profit with respect to Budget Level B
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Figure 2.2: Manufacturer’s Expected Profit with respect to Budget Level B

In Figure 2.3 and 2.4, the following observations confirm most of our ana-
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lytical conclusion: (c) as B grows, the retailer’s expected profit increases under

both TC and TQ systems, and it first decreases until t and then increases under

T and QR systems; and (d) ΠT ∗
R ≥ ΠQR∗

R ≥ ΠTQ∗

R ≥ ΠTC∗
R when B ≤ c and

ΠQR∗

R (ΠTQ∗

R ) ≥ ΠT ∗
R ≥ ΠTC∗

R when B > t. The first part of (d) is the charac-

terization of Example 2.5.1. in which T system outweighs other three systems

under the case of low budget level. This echoes the fact that the retailer will

be better off by using traditional system when she is not rich and prefer to

quick response or trade credit when she gets wealthy. We observe the relation-

ship ΠQR∗

R ≥ ΠTQ∗

R does not hold in the truncated normal case where it occurs

ΠQR∗

R < ΠTQ∗

R for some large B. This may be due to the differentiation between

the two demand distributions. In addition, we find even under the uniform case

where ΠQR∗

R ≥ ΠTQ∗

R for large B, e.g., B = 2.5, the magnitude of the profit dif-

ference is rather small, representing the fact that the retailer can obtain almost

the same surplus under QR system as that under TQ one. In this sense, when

B grows to a large level, QR system and TQ system benefit the retailer nearly

to the same extent.
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Figure 2.3: Retailer’s Expected Profit with respect to Budget Level B

In Figure 2.5 and 2.6, we examine the system’s expected profit and draw the
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Figure 2.4: Retailer’s Expected Profit with respect to Budget Level B

following observations: (e) when p = 2 and as B increases, ΠT ∗
and ΠQR∗

first

decreases and then increases while ΠTC∗
and ΠTQ∗

increase all the time; when

p = 4, ΠQR∗
first decreases and then increases while the other three system’s

expected profit increase all the time; and (f) under uniform distribution, when

p = 2, ΠT ∗ ≥ ΠQR∗ ≥ ΠTQ∗ ≥ ΠTC∗
for a small B, e.g., B = 2.4 and ΠQR∗ ≥

ΠTQ∗ ≥ ΠTC∗
= ΠT ∗

when B exceeds this certain level 2.4; when p = 4, it

follows ΠT ∗ ≥ ΠQR∗ ≥ ΠTQ∗ ≥ ΠTC∗
for every B in the given interval; and (g)

under truncated normal distribution, most conclusions in (f) follow except that

(1) ΠTC∗
> ΠTQ∗

R for small B and (2) when p = 4, the comparison between ΠT ∗
,

ΠQR∗
and ΠTQ∗

is ambiguous for large B and actually they are nearly the same

when B ∈ [3.3, 4].

From these observations, we can conclude that QR or TQ system only ben-

efits the whole supply chain when the initial budget suffices to afford the regular

ordering, otherwise the system performs best under the traditional system. TC

system will not benefit the system much when compared with the other three.

The reason is two-fold: firstly the retailer’s incentive to order will greatly be

distorted by the manufacturer’s first-move advantage and the second one is the
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system could achieve a Pareto optimal expected profit under both T and QR

system even given retailer’s insufficient endowment, which outweighs the benefit

under TC system .
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Figure 2.5: System’s Expected Profit with respect to Budget Level B
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Figure 2.6: Manufacturer’s Expected Profit with respect to Budget Level B

2.7. Retailer’s Non-default Case

In this section, we consider a case where the retailer is not allowed to default

when using trade credit scheme. This occurs when the retailer has some kinds

of assets or collateral to liquidate but these assets cannot be converted to cash
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for the regular ordering. Specifically, under TC system, even when the terminal

revenue is not sufficient to cover the loan, she should pay the difference by

liquidating the assets and denote a negative amount on her accounting lodger.

Recall we assume a zero expected profit when default occurs in the former case.

In this sense, the retailer’s expected profit is,

πTC
R =

∫ qTC

0

(B + pD − wTCqTC)
1

A
dD +

∫ A

qTC

(B + pqTC − wTCqTC)
1

A
dD

and the manufacturer should always collect πTC
M = wTCqTC∗ in this case. Simi-

larly, under TQ system, we have,

πTQ
R =

∫ qTQ

0

(B + pD − wTQqTQ)
1

A
dD

+

∫ qTQ+B
e

qTQ

(
B + pD − wTQqTQ − e(D − qTQ)

) 1
A
dD +∫ A

qTQ+B
e

(
p(qTQ +

B

e
)− wTQqTQ

) 1
A
dD

and

πTQ
M = wTQqTQ∗

By the same reasoning as the default case, we have two parallel propositions,

Proposition 2.7.1. Under trade credit system when the retailer is not allowed

to default, it follows wTC∗ = p
2
, qTC∗ = A

2
, πTC∗

M = Ap
4

and πTC∗
R = B + Ap

8
.

Proposition 2.7.2. Under quick credit system when the retailer is not allowed

to default, wTQ∗ = (1+y−yr)p
2

, qTQ∗ = (1+y−yr)A
2

, πTQ∗

M = A
4p

(
p − (p−e)B

Ae

)2
and

πTQ∗

R = −3r2+2r+1
8

B2

Ap
+ (1

4
+ 3r

4
)B + Ap

8
.
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Furthermore, compared with the performance between TC and TQ system

where the retailer is allowed to default, we have,

(1) πTC∗
R ≥ ΠTC∗

R and πTC∗
M ≤ ΠTC∗

M , particularly πTC∗
R > ΠTC∗

R and πTC∗
M <

ΠTC∗
M when B

Ap
≤ 1

4
;

(2) πTQ∗

R ≥ ΠTQ∗

R and πTQ∗

M ≤ ΠTQ∗

M , particularly πTQ∗

R > ΠTQ∗

R and πTQ∗

M <

ΠTQ∗

M when B
Ap

≤ 1
r+2

√
r+1

.

When the retailer is not rich enough, e.g., B
Ap

≤ 1
4
( B
Ap

≤ 1
r+2

√
r+1

) under

TC (TQ) system, she will be strictly better off under the non-default case while

the manufacture will on the contrary be worse off under this case. This is

not straightforward since the manufacturer might take more risk when facing

retailer’s default possibility. The reason is when the retailer is allowed to default

which means she is likely to order more in the first period, the manufacturer

therefore will charge a higher wholesale price to compensate the financial risk

while still inducing the same retailer’s regular order quantity qTC∗(qTQ∗) under

TC (TQ) system. In this sense, the retailer’s default scheme can actually help

the manufacturer to extract more benefit from the retailer’s surplus. When

the retailer is getting richer, these two scheme will generate the same surplus

for both parties. Numerically, we find the comparison between each player’s

expected profit under different system is analogous to the pervious non-default

case.

2.8. Concluding Remarks

In this paper, we have examined four different selling strategies (traditional,

quick-response, trade-credit, quick-credit) where a manufacturer who sells a

seasonal product through a retailer under budget constraint and demand un-
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certainty. We model these strategies as different Stackelberg games in which

the random demand follows a uniform distribution and we characterize the e-

quilibrium for each system.

From the retailer’s perspective, we show that the quick response system

dominates quick credit system and quick credit system dominates trade credit

system. In addition, it follows that the retailer will be better off under tradi-

tional system than under other three systems when she is not wealthy. These

results contradict our conventional wisdom since the retailer should be better

off under a system with more flexibility. We could attribute this findings to

the manufacturer’s control of wholesale price. The first-move advantage of the

control enables the manufacturer to extract more benefit from the retailer under

either quick response or trade credit flexibility. In particular, the trade cred-

it financing strengthens this first-move advantage which weakens the retailer’s

benefit, whereas the quick response strategy does the opposite.

From the manufacturer’s perspective, we find the trade credit system dom-

inates other three systems and the traditional system could outweigh either the

quick response or quick credit system. This again echoes the fact that trade

credit financing can strengthen the manufacturer’s first-move advantage where-

as the retailer’s quick response flexibility might weaken this kind of advantage,

thus resulting an inferior outcome for the manufacturer under either quick re-

sponse or quick credit system.

In addition, we explore an extended case where the retailer is not allowed to

default and find most profit comparison results for the default case still hold. As

to the whole supply chain system, by extensive numerical experiments we find

either quick response or quick credit system can benefit the whole supply chain

most when the initial budget is not too low while for the relatively low retailer’s
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budget level the system may performs best under the traditional system.

Our models have some limitations from the assumptions such as uniformly

distributed demand and the complete information. Relaxing these assumptions

could possibly lead to new insights, which, however, will also result in significant

analytical challenges. We leave it for our future research.

2.9. Appendix

Proof of Proposition 2.4.2

Proof. Plugging q∗TC = B+x
wTC

into (2.4), it holds,

(Ap− x)w2
TC − Ap2wTC + (B + x)p2 = 0 (2.11)

and into (2.5),

ΠTC
M = B + x− x2

2Ap
(2.12)

In order to ensure the existence of wTC in (2.12), x should satisfy,

A2p4 − 4(Ap− x)(B + x)p2 = m2 ≥ 0 (2.13)

where m ≥ 0. There are two cases for the further analysis:

Case 1: 0 ≤ B
Ap

≤ 1
4

Under this case, (2.13) requires 0 < x ≤ x1 ≤ Ap−B
2

or Ap ≥ x ≥ x2 ≥ Ap−B
2

where x1 and x2 are the two positive roots for m = 0, e.g., x1 =
1−y−

√
y2+2y

2
Ap

and x2 =
1−y+

√
y2+2y

2
Ap. If x ≥ x2, it requires the retailer’s remaining revenue
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should exceed the initial endowment B, otherwise the retailer will not join this

game. When x ≥ x2, the corresponding wTC = Ap2+m
2(Ap−x)

and qTC = B+x
wTC

, and

plugging them into (2.11),

ΠTC
R (x) =

x2

2Ap
− x+ pqTC − pq2TC

2A

=
x2

2Ap
− x+

(Ap2 −m)(3Ap2 +m)

8Ap3
(2.14)

Notice (2.14) decreases in x when Ap−B
2

≤ x ≤ Ap. Hence if we require

ΠTC
R (x) ≥ B, it follows

ΠTC
R (x2) = B +

Ap

8
− x2

2

2Ap
− Bx2

Ap
≥ B (2.15)

which is equivalent to the following inequity,

x2
2

2Ap
+

Bx2

Ap
≤ Ap

8

⇐⇒ (1 + y)
√

y2 + 2y ≤ y2 − 2y (2.16)

When y ≤ 1
4
, the above inequity never holds since (1 + y)

√
y2 + 2y ≥ 0 and

y2 − 2y ≤ 0, which indicates the assumption x ≥ x2 does not hold. Therefore

the feasible x should be less than x1. Under such an assumption, we can show

ΠTC
R (x1) ≥ B:

x2
1

2Ap
+

Bx1

Ap
≤ Ap

8

⇐⇒ −(1 + y)
√
y2 + 2y ≤ y2 − 2y (y2 − 2y ≤ 0)

⇐⇒ (1 + y)2(y2 + 2y) ≥ (y2 − 2y)2 (2.17)
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Note in (2.12), ΠTC
M is increasing in x when x ≤ Ap. Therefore the manufacturer

should choose the maximal feasible x1 to achieve the optimal surplus, which also

ensures the participation of the retailer.

Case 2: B
Ap

> 1
4

Under this case, there exists only one positive root x2 =
1−y+

√
y2+2y

2
satisfying

(2.13). For x ≥ x2, by the same argument as in Case 1, it can be proved that

x2
2

2Ap
+

Bx2

Ap
>

Ap

8

⇐⇒ (1 + y)
√

y2 + 2y ≥ y2 − 2y

which leads to ΠTC
R (x) ≤ ΠTC

R (x2) = B + Ap
8
− x2

2

2Ap
− Bx2

Ap
≤ B. Thus we claim

that the manufacturer cannot set a positive x because with this x(wTC), the

retailer can only gain an expected profit less than her initial budget B, which

is unacceptable for her. In view of this, the manufacturer should choose a mild

wTC , s.t., wTCq
∗
TC ≤ B, leading the retailer’s regular ordering without any trade

credit financing:

ΠTC
R =

∫ qTC

0

(B + pD − wTCqTC)
1

A
dD +

∫ A

qTC

(B + pqTC − wTCqTC)
1

A
dD

Under this traditional scenario, the problem can be easily solved. 2
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Proof of Proposition 2.4.4

Proof. Denote wTQq
∗
TQ = B + z, where z ≥ 0 and note this new variable z is

not necessarily of one-to-one relationship with wTQ. plugging q∗TQ = B+z
wTQ

into

(2.9),

(Ap− z)w2
TQ + (Bpr − AP 2 −Bp)wTQ + (B + z)p2 = 0 (2.18)

and into (2.10)

ΠTQ∗

M = B + z − z2

2Ap
(2.19)

To ensure the existence of wTQ, z should satisfy

g(z) = z2 + (B − AP )z +
1

4
(Ap+B −Br)2 − ABp ≥ 0 (2.20)

Case 1: B
Ap

≤ 1
r+2

√
r+1

Under this case, (2.20) requires 0 < z ≤ z1 ≤ Ap−B
2

or z > z2 > Ap−B
2

where z1 and z2 are the two positive roots for equation g(z) = 0, e.g.,

z1 =
1−y−

√
2yr−y2r2+2y2r

2
Ap and z2 =

1−y+
√

2yr−y2r2+2y2r

2
Ap. If z ≥ z2, to ensure

the retailer to participate, it requires,

ΠTQ
R (z2) =

−3r2 + 2r + 1

8

B2

Ap
+ (

1

4
+

3r

4
)B +

Ap

8
− z22

2Ap
− Bz2

Ap
≥ B

which is equivalent to the following inequity,

(y + 1)
√
2yr − y2r2 + 2y2r ≤ −y2r2 + 2y2 − 2y + 2yr (2.21)
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But

(y + 1)
√

2yr − y2r2 + 2y2r ≥ −y2r2 + 2y2r + 2yr ≥ −y2r2 + 2y2 − 2y + 2yr

which is contradictory to (2.21). Therefore the feasible z should be less than z1

and we can show ΠTQ
R (z1) ≥ B:

ΠTQ
R (z1) =

−3r2 + 2r + 1

8

B2

Ap
+ (

1

4
+

3r

4
)B +

Ap

8
− z21

2Ap
− Bz1

Ap
≥ B

⇐⇒ −(y + 1)
√

2yr − y2r2 + 2y2r ≤ −y2r2 + 2y2 − 2y + 2yr

Proof. If 1 ≤ r ≤
√
2, −y2r2+2y2−2y+2yr ≥ 0 ≥ −(y+1)

√
2yr − y2r2 + 2y2r;

Otherwise if r >
√
2, it holds −yr2 + 2y − 2 + 2r ≥ 2r − 2 − r2

r+2
√
r+1

=

r2+4r
√
r−4

√
r−2

r+2
√
r+1

≥ 0, which also indicates −y2r2 + 2y2 − 2y + 2yr ≥ 0 ≥ −(y +

1)
√

2yr − y2r2 + 2y2r. 2

So the manufacturer should choose this optimal z1(wTQ) to ensure the

participation of retailer.

Case 2: B
Ap

> 1
r+2

√
r+1

Under this case, there exists only one positive z2 satisfying (2.20). For this

z ≥ z2, it can be proved that ΠTQ
R (z2) < B:

(y + 1)
√

2yr − y2r2 + 2y2rx ≥ −y2r2 + 2y2 − 2y + 2yr

Hence at this time the manufacturer can never earn a profit more than B. So

we consider the case wTQq
∗
TQ ≤ B, under which the expected retailer’s profit
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becomes the following case,

ΠTQ
R =

∫ qTQ

0

(B + pD − wTQqTQ)
1

A
dD +

∫ qTQ+B
e

qTQ

(
B + pD − wTQqTQ

−e(D − qTQ)
) 1
A
dD +

∫ A

qTQ+B
e

(
p(qTQ +

B

e
)− wTQqTQ

) 1
A
dD

we have,

wTQ∗ =
(1 + y − yr)p

2
, qTQ∗ =

(1 + y − yr)A

2
,

ΠTQ∗

M =
A

4p

(
p− (p− e)B

Ae

)2
, ΠTQ∗

R =
−3r2 + 2r + 1

8

B2

Ap
+ (

1

4
+

3r

4
)B +

Ap

8

in order to guarantee to be an inner optimal solution, it should require qTQ∗ +

B
e
≤ A, which equivalent to the condition B

Ap
≤ 1

1+r
or B

Ae
≤ r

1+r
. 2

Proof of Theorem 2.5.1 and 2.5.2

Proof. Case 1: when B
Ap

≤ 1
r+2

√
r+1

for the manufacturer it follows

ΠTC∗

M = B + x1 −
x2
1

2Ap
≥ ΠTQ∗

M = B + z1 −
z21
2Ap

≥ ΠQR∗

M = ΠT ∗

M = B
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It suffices to show

ΠTC∗

M ≥ ΠTQ∗

M

⇐⇒ B + x1 −
x2
1

Ap
≥ B + z1 −

z21
Ap

⇐⇒ x1 =
1− y −

√
y2 + 2y

2
Ap ≥ z1 =

1− y −
√
2yr − y2r2 + 2y2r

2
Ap

⇐⇒ y ≤ 2

r − 1

⇐⇒ 1

r + 2
√
r + 1

≤ 2

r − 1

for the retailer, first it holds

ΠTQ∗

R ≥ ΠTC∗

R

⇐⇒ −3r2 + 2r + 1

8

B2

Ap
+

3r + 1

4
B +

Ap

8
− z21

2Ap
− Bz1

Ap
≥ B +

Ap

8
− x2

1

2Ap
− Bx1

Ap

⇐⇒ −3r2 + 2r + 1

8

B2

Ap
+

3r + 1

4
B +

Ap

8
≥ B +

Ap

8
(x1 ≥ z1)

⇐⇒ r − 1

4
B(3− 3r + 1

2r

B

Ae
) ≥ 0

and,

ΠQR∗

R ≥ ΠTQ∗

R

⇐⇒ − p

2A
(A− B

w2

)2 +
Ap

2

=
Ap

8

(
1 + yr − y +

√
(1 + yr − y)2 − 4yr

)(
3− yr + y −

√
(1 + yr − y)2 − 4yr

)
≥ −3r2 + 2r + 1

8

B2

Ap
+

3r + 1

4
B +

Ap

8

⇐⇒ 2(1 + y − yr)
√
(1 + yr − y)2 − 4yr) + (r2 + 2r − 3)y2 − (2r + 2)y + 1 ≥ 0

⇐⇒ (r2 + 2r − 3)y2 − (2r + 2)y + 1 ≥ 0 (2.22)
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Note 0 ≤ y ≤ 1
r+2

√
r+1

and 1
r+2

√
r+1

≤ r+1
r2+2r−3

, (2.22) follows when y ≤ 1
r+2

√
r+1

.

finally,

ΠT ∗

R ≥ ΠQR∗

R

⇐⇒ − p

2A
(A− B

w1

)2 +
Ap

2
≥ − p

2A
(A− B

w2

)2 +
Ap

2

⇐⇒ q∗T =
A

2
(1 +

√
1− 4y) ≥ q∗QR =

A

2

(
1 + yr − y +

√
(1 + yr − y)2 − 4yr

)
Case 2: 1

r+2
√
r+1

≤ B
Ap

≤ 1
4

for the manufacturer it follows,

ΠTC∗

M ≥ Ap

4
≥ ΠT ∗

M = B ≥ ΠQR∗

M =
Ae

(
r − (r − 1) B

Ae

)
2(
√
r + 1)

≥ ΠTQ∗

M =
A

4p

(
p− (p− e)B

Ae

)2
for the retailer, the relationship ΠT ∗

R ≥ ΠTC∗
R and ΠTQ∗

R ≥ ΠTC∗
R can be proved

by the same argument as in Case 1. Here we just prove ΠQR∗

R ≥ ΠTQ∗

R :

ΠQR∗

R ≥ ΠTQ∗

R

⇐⇒ (1−
√
r)(

√
r + 1)2

4
√
r

B2

Ae
+

1

2
(r +

√
r)B +

√
r

4(
√
r + 1)

Ap

≥ −3r2 + 2r + 1

8

B2

Ap
+

3r + 1

4
B +

Ap

8

⇐⇒ πQR∗

R − πTQ∗

R =
(
√
r − 1)2(r − 1)

8

B2

Ap
− (

√
r − 1)2

4
B +

√
r − 1

8(
√
r + 1)

Ap ≥ 0

⇐⇒
√
r − 1

8(
√
r + 1)

Ap
(
(r − 1)

B

Ap
− 1

)2 ≥ 0

ΠT ∗

R ≥ ΠTC∗

R ⇐⇒ B

2
+

Ap

4
+

A

2

√
p2

4
− Bp

A
≥ B +

Ap

8
≥ B +

Ap

8
− x2

1

2Ap
− Bx1

Ap

⇐⇒ B

Ap
≤ 1

4
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Case 3: B
Ap

≥ 1
4

for the manufacturer,

ΠT ∗

M = ΠTC∗

M =
Ap

4
≥ ΠQR∗

M =
Ae

(
r − (r − 1) B

Ae

)
2(
√
r + 1)

≥ ΠTQ∗

M =
A

4p

(
p− (p− e)B

Ae

)2
for the retailer, the relationship ΠQR∗

R ≥ ΠTQ∗

R ≥ ΠTC∗
R = ΠT ∗

R can be obtained

by the exactly same argument in Case 1 and Case 2 and we do not proved that

here in detail. 2
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3.1. Introduction

Asness (2012) argued in the Wall Street Journal against Warren Buffett – the

once world richest man who supports raising taxes – that tax may have signifi-

cant impact on investment decisions. Essentially one of Asness’ key arguments

is the influence of tax asymmetry. Tax asymmetry means that the taxation of

profits and the compensation for losses are not symmetric (Graham and Smith

(1999), Eldor and Zilcha (2004)). In fact, tax asymmetry has received consid-

erable attention in such areas as economics and finance, see for example, Nance

et al. (1993), Eldor and Zilcha (2002, 2004), and Creedy and Gemmell (2011)

and the references therein. However, there is relatively limited research that

incorporates the impact of tax asymmetry in the area of operations manage-

ment. This paper addresses this fundamental issue in a stylized multi-period

inventory control problem.

We consider a firm’s inventory decisions over multiple periods in a finite

horizon, which usually corresponds to a tax year. In each period, the firm

can produce the product as the traditional inventory model does. The random

demand is realized during the period and the sales revenue is collected. Unsold

inventory is carried to the next period and the unmet demand is lost. At the end

of the horizon, the firm faces a tax asymmetric problem in which she should pay

a proportional tax only if her terminal accumulative profit is positive. The firm’s

objective is to maximize her expected terminal after-tax profit. Because tax

asymmetry leads to asymmetric gains and losses, our model can be alternatively

interpreted as a framework to model a loss-averse manufacturer whose gains

or losses are assessed at the end of the planning horizon. We formulate the

firm’s problem as a stochastic dynamic programming problem and we derive
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the optimal policy and a number of structural properties. Also, we obtain a

number of insights through these properties and numerical experiments.

In particular, we exploit the problem structures and show that an equity-

dependent base-stock policy is optimal, where the equity level is the sum of

the firm’s current cumulative profit level and her on-hand inventory valued at

the purchasing price. We also investigate the structure of the firm’s optimal

policy through some distinct analytical techniques. We show the structure of

the optimal policy can be partially characterized by dividing the equity level

into three regions. In the two extreme regions, the firm’s order decision is not

affected by the tax consideration; and in the middle region, the firm’s optima

policy will be affected by the tax asymmetry under which she chooses to order

less than that in the case without tax consideration. We provide comprehensive

numerical experiments to further investigate the middle region. The results

show that the optimal order quantity first decreases and then increases in the

equity level, revealing a “V”-shaped structure. The numerical examples also

show that there might be significant profit loss if the true optimal policy is

otherwise replaced by the optimal policy without considering tax.

We summarize our main contribution of this paper as follows. (1) We show

that a state-dependent base stock policy is optimal for the proposed multi-

period inventory control problem under tax asymmetry. (2) We prove the fun-

damental insight that in each period, there exists a period-dependent equity

interval, in which the firm should order less than the optimal quantity without

considering tax; but the firm should order the same quantity when her equity

level is outside the interval. (3) We develop some distinct analytical techniques

to tackle the inherent difficulty caused by the model formulation. (4) Our model

and results can be easily adopted in more general settings such as loss-aversion



www.manaraa.com

Chapter 3. A Multi-Period Inventory Control Problem with Tax
Consideration 91

that is valuated by the terminal profit.

The rest of this article is organized as follows. In the next section, we

review related literature. In Section 3.3, we introduce the inventory control

problem with tax consideration. Section 3.4 presents a number of structural

properties that lead to characterization of the optimal policy. In this section,

we also show how tax asymmetry may affect the optimal decisions and profits

through a series of properties. We present numerical studies in Section 3.5.

This paper is concluded in Section 3.6.

3.2. Literature Review

There are tremendous efforts in studying the tax asymmetry in the fields of

economics and finance, see for example, Nance et al. (1993), Eldor and Zilcha

(2002, 2004), and Creedy and Gemmell (2011) and the references therein.

Zilcha and Eldor (2004) consider competitive firms operating under price un-

certainty when taxation is asymmetric. They show that tax asymmetry has a

significant effect on firm’s optimal production level and its market value in

the case where risk sharing tools do not exist. Altshuler and Auerbach (1990)

study the significance of tax law asymmetries by an empirical investigation.

Their main focus is on how the asymmetric treatment of gain and losses by the

corporate income tax affects a firm’s financial structure.

In the interface between tax research and operations management, there

are two streams we will review in this paper. First, there are a number of deter-

ministic models on production and inventory decisions with tax considerations.

Munson and Rosenblatt (1997), Wilhelm et al. (2005), and Li et al. (2007) de-

velop deterministic optimization models to study the impact of the tariff rules
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with local content requirements on global sourcing and production decision.

The latter two works are motivated by tariff structures from Japan-Singapore

Economic Partnership Agreement (JSEPA) and North American Free Trade

Agreement (NAFTA), respectively.

Another stream of research focus on transfer pricing with tax issues be-

tween countries. A number of papers, including Nieckels (1976), Cohen et al.

(1989), Kouvelis and Gutierrez (1997), Vidal and Goetschalckx (2001), and

Goetschalckx et al. (2002), consider using transfer pricing to improve the per-

formance of global supply chain operations. Such a pricing mechanism is widely

used by MNFs to charge products and services among their own divisions or

subsidiaries located in different countries. In these papers, transfer prices, along

with the usual production and distribution decisions, become parts of decision-

s, which could take advantage of differentiated corporate tax rates in different

countries (for example, Vidal and Goetschalckx 2001 explicitly consider rules

imposed by tax authorities). The interactions of transfer pricing and produc-

tion/distribution decisions are typically formulated as non-linear mathematical

models, which are then often solved by heuristics. Hsu and Zhu (2011) develop

analytical models to evaluate the impact of China’s export-oriented tax and

tariff structures on a multinational firm’s operations in China. They compare

a number of supply chain policies in a two-market (one domestic and one over-

seas) with uncertain demands business environment. Their analysis also offer

managerial insights on how supply chain structures will evolve as the firm’s

business environment change.

Our work is related to the sizable literature on stochastic multi-period in-

ventory control problem. Here we review some related papers. For the objective

that aims to minimize holding and penalty costs, Morton (1971) studies a my-
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opic policy under which the order quantity has to satisfy the optimal condition

for the current period. Gaver (1959) and Morse (1959) pioneer the base-stock

policy which means for each period there is a state-dependent order-up-to level

S below which the optimal inventory level should be replenished back to this

S. Several works develop various simple approximations to derive the optimal

order-up-to level S, including Johansen and Thorstenson (2008) and Bijvank

and Johansen (2012). Levi et al. (2008) propose a dual-balancing policy in

which the penalty costs due to lost sales is balanced with the holding costs

incurred by over-ordering. Besides the cost model, Van Donselaar et al. (2013)

and Bijvank (2009) derive an approximation policy for the service fill rate crite-

rion. For a comprehensive review one lost-sales, periodic-review models, readers

are referred to Bijvank et al. (2011). Compared with these traditional models,

the main difference in our model is that by considering the expected after-tax

terminal profit, the costs or profits are no longer additive among periods, which

poses new research questions but also technical challenges.

Finally, as explained earlier, tax asymmetry can be interpreted as loss

aversion, thus our work is also related to the stream of literature on inventory

management with risk preferences of the decision maker. Most research works

in this area employ single-period models; see, for example, Eechhoudt et al.

(1995), Mart́ınez-de-Albéniz and Simchi-Levi (2003), Lee et al. (2015), and the

references therein. There are relatively limited research that consider firms’ risk

preferences under multi-period settings. Chen et al. (2007) propose a framework

that incorporates risk aversion in multi-period inventory models. Chen and Sun

(2012) extend Chen et al. (2007) to infinite horizon with risk and ambiguity

aversion. They assume that “additive independence axiom” holds, i.e., the

utility of the decision maker is the sum of the utilities in each period. Contrary
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to this assumption, in our model, the inventory manager’s expected after-tax

terminal profit can be interpreted as a kind of utility that depends on the sum

of all realized profits in every period of the planning horizon. That is, the

inventory manager’s utility is a function of the total before-tax profit of the

whole planning horizon, which violates the “additive independence axiom”.

In this paper, we intend to study multi-period inventory problems under

tax consideration with the objective to maximize the total expected after-tax

profit for a certain horizon such as a tax year. Incorporating tax asymmetry

of a firm’s yearly taxable profit into multiperiod inventory control problems

adds one additional dimension that may help us consider operations for broader

business situations. We therefore expect that this study may help enrich the

inventory management literature and shed some light on further integration and

development of tax issues with inventory and supply chain management.

3.3. The Model

Consider a manufacturing firm facing a finite-horizon production planning prob-

lem. The planning period under consideration is a tax year. Within this plan-

ning horizon, there are multiple decision periods such as quarters, months, or

weeks. We consider the single-product decision making problem in which the

firm produces one product. In each period, the firm has to decide the produc-

tion quantity, given the decisions and the demand realizations in the previous

periods. At the end of the planning horizon, leftover inventory is salvaged at

a constant, which is normalized to zero, unmet demand is lost, and the total

revenue is realized. Then, based on the net profit at the end of horizon, tax

is levied. Specifically, when the net profit is positive, a fixed-percentage tax is
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levied and no tax will be incurred if the net profit is negative – meaning there

is a loss.

Suppose there are T + 1 periods, where periods 1 through T are decision

periods, and period T + 1 is an artificial terminal period in which the firm’s

terminal profit is realized and tax levied. The firm has to decide the production

quantity in each period t, t = 1, · · · , T .

We define

t = period index, t = 1, · · · , T + 1;

Dt = stochastic demand in period t, Dt can be any non-stationary demand

patterns, e.g., Dt ∼ Ft(·);

xt = net inventory level at the beginning of period t before ordering;

yt = net inventory level at the beginning of period t after ordering but

before demand realization.

We assume the following stationary cost parameters:

c = unit ordering cost;

p = unit sales price, assume that p > c;

h = unit holding cost.

In addition, let

x+ = max{x, 0}, for any real number x;

x− = max{−x, 0}, for any real number x.

The sequence of events in each period t, t = 1, · · · , T , is as follows: (1)

the period t begins with an initial inventory level xt and a cumulative profit ut;

(2) the firm determines order quantity yt − xt, where yt ≥ xt is the order-up-to

level, and the order arrives instantaneously; (3) demand Dt is realized at dt and

satisfied, unsatisfied demand is lost, leftover inventory is carried to the next

period, i.e., period t + 1, production cost, sales revenue, and holding cost are
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incurred.

The ending after-tax profit in period T + 1 given initial inventory xT and

commutative profit uT is uT+1− τu+
T+1, where for ease of exposition, we assume

zero salvage value in the terminal period. Let (xt, ut) denote the state of the

system in period t. Then the state transitions between period t and period t+1

can be written as follows:

xt+1 = (yt −Dt)
+;

ut+1 = ut + pmin{Dt, yt} − c(yt − xt)− h(yt −Dt)
+.

The transition of inventory level follows directly from the lost-sales assumption

while the transition of cumulative profit can be calculated from two components,

one is the cumulative profit ut at the beginning of period t and the other is the

net profit ût(xt, yt, Dt) = pmin{Dt, yt} − c(yt − xt)− h(yt −Dt)
+ that the firm

earns in period t after demand is realized. Note ut should be carried to the next

period until the terminal period T + 1.

Turning to the objective of the firm. Denote V (xt, ut) as the optimal total

expected after-tax terminal profit at the beginning of period t, given the starting

inventory xt and the starting cumulative profit ut. Then, using the theory of

Markov decision processes, for t = 1, · · · , T , we have the optimality equation

Vt(xt, ut) = max
yt≥xt

EDt

[
Vt+1

(
(yt −Dt)

+ , ut + pmin{Dt, y} − c(yt − xt)− h(yt −Dt)
+
)]

,

and the boundary condition VT+1(xT+1, uT+1) = uT+1 − τu+
T+1.

Without tax consideration in the terminal period, the above problem re-

duces to a classical periodic-review inventory control problem and is readily

solvable. However, the asymmetric tax in the terminal period makes the in-
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ventory decision significantly complex. One obvious observation is that the

decisions in periods 1 through period T are all related to the terminal profit in

period T + 1. In the next section, we will explore the properties and optimal

policy for the proposed problem.

3.4. Structural Properties and Optimal Policy

In this section, we first explore the problem structures and present a number of

properties. We characterize the optimal policy based on these properties. We

then further investigate the structure of the optimal policy through showing a

series of properties. From the expression of ût(xt, yt, Dt), the following lemma

is obvious.

Lemma 3.4.1. ût(xt, yt, Dt) is concave in yt for any given xt and Dt, t =

1, · · · , T .

The following lemma indicates that the total expected after-tax profit is

increasing in the initial profit in any period, which is intuitively true.

Lemma 3.4.2. Vt(xt, ut) is increasing in ut for any fixed xt, t = 1, · · · , T + 1.

Proof. We prove by induction. First, it is obvious that VT+1(xT+1, uT+1) =

uT+1 − τ(uT+1)
+ is increasing in uT+1 for any fixed xT+1. Suppose now

Vt+1(xt+1, ut+1) is increasing in ut+1 for any fixed xt+1. We prove this also

holds for Vt(xt, ut). For any u1
t , u

2
t , where u1

t ≤ u2
t , by assumption, we have, for

any fixed yt, xt, where yt ≥ xt ≥ 0, and Dt,

Vt+1((yt −Dt)
+, u1

t + ût(xt, yt, Dt)) ≤ Vt+1((yt −Dt)
+, u2

t + ût(xt, yt, Dt)).
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Suppose y∗t = argminyt≥xt EDt [Vt+1((yt −Dt)
+, u1

t + ût(xt, yt, Dt))], then we

have

Vt(xt, u
1
t ) = EDt

[
Vt+1((y

∗
t −Dt)

+, u1
t + ût(xt, y

∗
t , Dt))

]
≤ EDt

[
Vt+1((y

∗
t −Dt)

+, u2
t + ût(xt, y

∗
t , Dt))

]
≤ max

yt≥xt

EDt

[
Vt+1((yt −Dt)

+, u2
t + ût(xt, yt, Dt))

]
= Vt(xt, u

2
t ).

This completes the proof. 2

Lemma 3.4.3. Vt(xt, ut) ≥ Vt(xt +∆, ut − p̃∆) for any p̃ ≥ c and ∆ ≥ 0.

Proof. Suppose y∗t = argminyt≥xt+∆ Vt(xt +∆, ut − p̃∆), then we have

Vt(xt +∆, ut − p̃∆)

= EDt

[
Vt+1((y

∗
t −Dt)

+, ut − p̃∆+ pmin{y∗t , Dt} − cy∗t + cxt + c∆− h(y∗t −Dt)
+)
]

≤ EDt

[
Vt+1((y

∗
t −Dt)

+, ut + pmin{y∗t , Dt} − cy∗t + cxt − h(y∗t −Dt)
+)
]

≤ max
yt≥xt

EDt

[
Vt+1((yt −Dt)

+, ut + pmin{yt, Dt} − cyt + cxt − h(yt −Dt)
+)
]

= Vt(xt, ut).

where the first inequality is due to Lemma 3.4.2 and the fact that −(p̃−c)∆ ≤ 0.

2

Lemma 3.4.4. Vt(xt, ut) is jointly concave in (xt, ut).

Proof. We show the statement by induction. First, it is easy to verify that

VT+1(xT+1, uT+1) = uT+1 − τ (uT+1)
+ is jointly concave in (xT+1, uT+1). Now

suppose that the statement is true for Vt+1(xt+1, ut+1), 1 ≤ t ≤ T . we will show
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that it will also hold for Vt(xt, ut). Before showing this, we show that

Vt+1((yt −Dt)
+, ut + ût(xt, yt, Dt))

= Vt+1

(
(yt −Dt)

+, ut + pmin{Dt, yt} − c(yt − xt)− h(yt −Dt)
+
)

is jointly concave in (xt, ut, yt) for any fixed Dt. Let

∆ , λ(y1t −Dt)
+ + (1− λ)(y2t −Dt)

+ −
(
λy1t + (1− λ)y2t −Dt

)+ ≥ 0.

Note that

pmin{Dt, λy
1
t + (1− λ)y2t } −∆p

= pmin{Dt, λy
1
t + (1− λ)y2t }

−p{λy1t − λmin{y1t , Dt}+ (1− λ)y2t − (1− λ)min{y2t , Dt}}

+p{λy1t + (1− λ)y2t −min{λy1t + (1− λ)y2t , Dt}}

= λpmin{y1t , Dt}+ (1− λ)pmin{y2t , Dt}.

Then for any two triples (x1
t , u

1
t , y

1
t ) and (x2

t , u
2
t , y

2
t ), where y

i
t ≥ xi

t, i = 1, 2, and
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0 ≤ λ ≤ 1, we have

Vt+1

( (
λy1t + (1− λ)y2t −Dt

)+
, λu1

t + (1− λ)u2
t

+ ût(λx
1
t + (1− λ)x2

t , λy
1
t + (1− λ)y2t , Dt)

)
= Vt+1

( (
λy1t + (1− λ)y2t −Dt

)+
, λu1

t + (1− λ)u2
t + pmin{Dt, λy

1
t + (1− λ)y2t }

− c(λy1t + (1− λ)y2t −
(
λx1

t + (1− λ)x2
t

)
)− h(λy1t + (1− λ)y2t −Dt)

+
)

≥ Vt+1

( (
λy1t + (1− λ)y2t −Dt

)+
+∆, λu1

t + (1− λ)u2
t + pmin{Dt, λy

1
t + (1− λ)y2t }

− c(λy1t + (1− λ)y2t −
(
λx1

t + (1− λ)x2
t

)
)− h(λy1t + (1− λ)y2t −Dt)

+ −∆p
)

= Vt+1

(
λ(y1t −Dt)

+ + (1− λ)(y2t −Dt)
+, λu1

t + (1− λ)u2
t + λpmin{y1t , Dt}

+ (1− λ)pmin{y2t , Dt} − c(λy1t + (1− λ)y2t −
(
λx1

t + (1− λ)x2
t

)
)

− h(λy1t + (1− λ)y2t −Dt)
+
)

≥ Vt+1

(
λ(y1t −Dt)

+ + (1− λ)(y2t −Dt)
+, λu1

t + (1− λ)u2
t + λpmin{y1t , Dt}

(1− λ)pmin{y2t , Dt} − c(λy1t + (1− λ)y2t −
(
λx1

t + (1− λ)x2
t

)
)

− λh(y1t −Dt)
+ − (1− λ)(y2t −Dt)

+
)

= Vt+1

(
λ(y1t −Dt)

+ + (1− λ)(y2t −Dt)
+,(

u1
t + ût(x

1
t , y

1
t , Dt)

)
+ (1− λ)

(
u2
t + ût(x

2
t , y

1
2, Dt)

) )
≥ λVt+1

(
(y1t −Dt)

+, u1
t + ût(x

1
t , y

1
t , Dt)

)
+ (1− λ)Vt+1

(
(y2t −Dt)

+, u2
t + ût(x

2
t , y

2
t , Dt)

)
where the first inequality is by Lemma 3.4.3 (note that here p̃ = p ≥ c), the

second inequality is by the fact that −h(yt − Dt)
+ is concave in yt, and the

last inequality is by the inductive assumption that Vt+1(xt+1, ut+1) is jointly

concave in (xt+1, ut+1). Hence by definition Vt+1((yt − Dt)
+, ut + û(xt, yt, Dt))

is jointly concave in (xt, ut, yt). It follows directly that before demand realiza-
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tion EDt [Vt+1((yt −Dt)
+, ut + û(xt, yt, Dt))] is also jointly concave in (xt, ut, yt).

Note that

Vt(xt, ut) = max
yt≥xt

EDt

[
Vt+1((yt −Dt)

+, ut + û(xt, yt, Dt))
]

and the maximization is over a convex set {(xt, ut, yt) : yt ≥ xt}, it follows that

the function Vt(xt, ut) is jointly concave in (xt, ut). 2

Theorem 3.4.1. A state-dependent base-stock policy is optimal for the problem,

specifically, there is an optimal order-up-to level y∗t (vt) in period t, where vt =

ut + cxt, such that

(a) if xt < y∗t (vt), order y∗t (vt)− xt, and

(b) if xt ≥ y∗t (vt), order nothing.

Proof. Define

Πt(vt, yt) = EDt

[
Vt+1((yt −Dt)

+, vt + pmin{yt, Dt} − cyt − h(yt −Dt)
+)
]

The state-dependent optimal order-up-to policy follows directly from the fact

that Πt(vt, yt) is a concave function in yt given vt. 2

Note that vt can be interpreted as an equity level representing the sum

of the cumulative profit and on-hand inventory valued at the purchasing price.

We can see that for each period the optimal order-up-to level y∗t (xt, ut) is only

related to this state variable (equity level) vt. In what follows we will study how

the optimal order-up-to level y∗t is affected by different starting equity level vt.

Define a sequence of concave functions and a sequence of control variable
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as follows: HT+1(yT+1) = −cyT+1, and for t = 1, · · · , T ,

Ht(yt) = EDt

[
pmin{yt, Dt} − cyt + (c− h)(yt −Dt)

+ +Ht+1(max{(yt −Dt)
+, zt+1}

]
,

where zT+1 = 0 and for t = 1, · · · , T , zt is the smallest maximizer of Ht(yt)

over yt ≥ 0. Note Ht(yt) is independent of the equity level vt and that ∂2Ht

∂y2t
≤

(c − h − p)ft(yt) ≤ 0 (because p + h ≥ c), which implies Ht(·) is a concave

function in yt and the unique existence of zt. It can be easily verified that zt

is the optimal inventory level without tax consideration, i.e., when τ = 0. For

ease of our analytical development, we reformulate this classical multiperiod

dynamic newsvendor problem in accord with our problem as expressed in (1)

as follows:

V̂t(xt, ut) = max
yt≥xt

EDt

[
V̂t+1((yt −Dt)

+, ut + û(xt, yt, Dt))
]
, t = 1, · · · , T,

with the terminal function V̂T+1(xT+1, uT+1) = uT+1.

Corollary 3.4.1. ∂Vt(xt,ut)
∂ut

is nonnegative and is decreasing in ut.

Proof. The result follows directly from Lemmata 3.4.2 and 3.4.4. 2

Corollary 3.4.1 shows that the marginal value of profit ut “already earned”

is always nonnegative but is decreasing due to tax effect. The decreasing

marginal value of the profit already earned is because a higher initial profit

ut leads to a higher chance of a positive terminal profit and a resulting higher

tax payment. Note that without considering tax, ∂Vt(xt,ut)
∂ut

is a constant.
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Lemma 3.4.5. For every period t and for any p̃ ≥ p, it follows:

∂Vt(xt, ut)

∂ut

≤ ∂Vt(xt +∆, ut − p̃∆)

∂ut

. (3.1)

Proof. We prove by induction. First, we can verify that the property holds for

T + 1. We assume it holds for t+ 1 ∈ {2, · · · , T + 1}.

Case (a): y∗t ≥ xt. Sub-Case (i): xt +∆ ≤ y∗t , we have

∂Vt(xt, ut)

∂ut

= EDt<y∗t

∂

∂ut+1

Vt+1 (y
∗
t −Dt, ut + cxt + pDt − cy∗t − h(y∗t −Dt))

+EDt≥y∗t

∂

∂ut+1

Vt+1 (0, ut + cxt + py∗t − cy∗t )

= EDt<y∗t

∂

∂ut+1

Vt+1 (y
∗
t −Dt, ut − c∆+ cxt + c∆+ pDt − cy∗t − h(y∗t −Dt))

+EDt≥y∗t

∂

∂ut+1

Vt+1 (0, ut − c∆+ cxt + c∆+ py∗t − cy∗t )

=
∂Vt(xt +∆, ut − c∆)

∂ut

≤ ∂Vt(xt +∆, ut − p̃∆)

∂ut

,

where the inequality is by Corollary 3.4.1. Sub-Case (ii): xt +∆ > y∗t . In this

subcase, we further study two scenarios: (ii.1) y∗t (xt+∆, ut−p∆) < xt+∆ and

(ii.2) y∗t (xt+∆, ut−p∆) ≥ xt+∆. We first consider (ii.1): y∗t (xt+∆, ut−p∆) <
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xt +∆. In this scenario, let ∆1 = y∗t − xt and ∆2 = ∆−∆1, then we have

∂Vt(xt, ut)

∂ut

= EDt<y∗t

∂

∂ut+1

Vt+1 (y
∗
t −Dt, ut + cxt + pDt − cy∗t − h(y∗t −Dt))

+EDt≥y∗t

∂

∂ut+1

Vt+1 (0, ut + cxt + py∗t − cy∗t )

= EDt<y∗t

∂

∂ut+1

Vt+1 (y
∗
t −Dt, ut + cxt + pDt − cy∗t − h(y∗t −Dt))

+Ey∗t ≤Dt≤xt+∆
∂

∂ut+1

Vt+1 (0, ut + cxt + py∗t − cy∗t )

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + cxt + py∗t − cy∗t )

= EDt<y∗t

∂

∂ut+1

Vt+1 (xt +∆1 −Dt, ut + cxt + pDt − c(xt +∆1)− h(xt +∆1 −Dt))

+Ey∗t ≤Dt≤xt+∆
∂

∂ut+1

Vt+1 (0, ut + cxt + p(xt +∆1)− c(xt +∆1))

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + cxt + p(xt +∆1)− c(xt +∆1))

= EDt<y∗t

∂

∂ut+1

Vt+1 (xt +∆1 −Dt, ut − c∆1 + h∆2 + pDt − h(xt +∆−Dt))

+Ey∗t ≤Dt≤xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt + (p− c)∆1)

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt + (p− c)∆1)

≤ EDt<y∗t

∂

∂ut+1

Vt+1 (xt +∆1 +∆2 −Dt, ut − p∆2 − c∆1 + h∆2 + pDt − h(xt +∆−Dt))

+Ey∗t ≤Dt≤xt+∆
∂

∂ut+1

Vt+1 (xt +∆−Dt, ut + pxt − p(xt +∆−Dt) + (p− c)∆1)

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt)

≤ EDt<xt+∆
∂

∂ut+1

Vt+1 (xt +∆−Dt, ut − p∆+ pDt − h(xt +∆−Dt))

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt)

=
∂Vt(xt +∆, ut − p∆)

∂ut

≤ ∂Vt(xt +∆, ut − p̃∆)

∂ut

,
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where the first inequality is by the inductive assumption and Corollary 3.4.1

and the second and the last inequalities is by Corollary 3.4.1. The last equality

holds because y∗t (xt +∆, ut − p∆) ≤ xt +∆.

(ii.2) y∗t (xt +∆, ut − p∆) ≥ xt +∆. In this scenario, it follows that

∂Vt(xt, ut)

∂ut

≤ ∂Vt(xt, ut − (p− c)∆)

∂ut

=
∂Vt(xt +∆, ut − p∆)

∂ut

≤ ∂Vt(xt +∆, ut − p̃∆)

∂ut

,

where the two inequalities are due to Corollary 3.4.1 and the equality is due to

the fact that y∗t (xt +∆, ut − p∆) ≥ xt +∆.

Case (b): y∗t < xt. We have

∂Vt(xt, ut)

∂ut

= EDt<xt

∂

∂ut+1

Vt+1 (xt −Dt, ut + pDt − h(xt −Dt)) + EDt≥xt

∂

∂ut+1

V (0, ut + pxt)

= EDt<xt

∂

∂ut+1

Vt+1 (xt −Dt, ut + pDt − h(xt −Dt)) + Ext≤Dt<xt+∆
∂

∂ut+1

V (0, ut + pxt)

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt)

≤ EDt<xt

∂

∂ut+1

Vt+1 (xt +∆−Dt, ut − p∆+ pDt − h(xt +∆−Dt))

+Ext≤Dt<xt+∆
∂

∂ut+1

Vt+1 (xt +∆−Dt, ut − p∆+ pDt − h(xt +∆−Dt))

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt)

= EDt<xt+∆
∂

∂ut+1

Vt+1 (xt +∆−Dt, ut − p∆+ pDt − h(xt +∆−Dt))

+EDt≥xt+∆
∂

∂ut+1

Vt+1 (0, ut + pxt)

≤ ∂Vt(xt +∆, ut − p∆)

∂ut

≤ ∂Vt(xt +∆, ut − p̃∆)

∂ut

,

where the first inequality is by the inductive assumption, the second inequality

is by arguments similar to that of Sub-Case (ii.1) of Case (a), and the last
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inequality is by Corollary 3.4.1. 2

Lemma 3.4.5 extends the insight in Lemma 3.4.3. Lemma 3.4.3 shows that

it is more profitable to hold cash rather than inventory. Lemma 3.4.5 further

shows that the marginal value of holding cash is lower when part of the inventory

is liquidated at the selling price p instead of the purchasing price c. At first

glance, it seems that inequality (3.1) should hold for p̃ ≥ c (in a fashion similar

to Lemma 3.4.3). However, this is not true. Indeed, when p̃ ≥ c we can see the

inequality does not hold and this is illustrated in the following example.

Example 3.4.1. Consider a two-period problem instance with c = 1, p = 5,

h = 1, τ = 0.25, x = 7.78 and u = −50, D1 ∼ U [0, 10] and D2 ∼ U [0, 10].

Then we have

∂V1(x1, u1)

∂u1

= 0.93114 >
∂V1(x1 + 0.01, u1 − 0.01c)

∂u1

= 0.93113.

Lemma 3.4.6. For any t = 1, · · · , T + 1, we have

∂Vt(xt, ut)

∂xt

≤ c
∂Vt(xt, ut)

∂ut

. (3.2)

Proof. We consider two cases (a) y∗t < xt and (b) y∗t ≥ xt. First consider Case

(a), we have

∂Vt(xt, ut)

∂xt

− c
∂Vt(xt, ut)

∂ut

= EDt≤xt

∂Vt+1

∂xt+1

(xt −Dt, ut + (p+ h)Dt − hxt)

−EDt≤xt(c+ h)
∂Vt+1

∂ut+1

(xt −Dt, ut + (p+ h)Dt − hxt)

+EDt>xt(p− c)
∂Vt+1

∂ut+1

(0, ut + pxt)

=
∂Πt

∂yt
(vt, xt) ≤ 0,
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where the inequality is due to the fact that y∗t < xt. Next, consider Case (b):

y∗t ≥ xt. it is obvious that

∂Vt(xt, ut)

∂xt

− c
∂Vt(xt, ut)

∂ut

= 0.

This completes the proof. 2

Lemma 3.4.6 shows the relationship between the marginal values of xt and

ut in any period t. It further complements the insights about inventory and

cash in Lemmata 3.4.3 and 3.4.5. Not only it is more profitable to hold cash

rather than inventory, but also the marginal value of inventory is always no

more than its corresponding cash value.

Lemma 3.4.7. For t = 1, · · · , T + 1, suppose xt ≥ zt, then

∂V̂t(xt, ut)

∂xt

= (c+H ′
t(xt))

∂V̂t(xt, ut)

∂ut

.

Proof. By definition, for xt ≥ zt, we have

V̂t(xt, ut) = ut + cxt +Ht(xt),

based on which the desired result follows. 2

This Lemma demonstrates the exact relationship between the marginal

values of xt and ut in any period t for the value function V̂t(xt, ut) while we find

a similar inequality follows for Vt(xt, ut) instead of an equality relationship in

the following important proposition.

Proposition 3.4.1. For t = 1, · · · , T + 1, the following results hold:
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(a) y∗t ≤ zt;

(b) For xt ≥ zt,

∂Vt(xt, ut)

∂xt

≤ (c+H ′
t(xt))

∂Vt(xt, ut)

∂ut

.

Proof. We prove (a) and (b) simultaneously by induction. First, we need to

verify that (a) and (b) hold true for t = T + 1. For (a), by definition y∗T+1 =

zT+1 = 0. For (b), by the definition of Ht(yt), for xT+1 ≥ zT+1, we have

H ′
T+1(xT+1) = −c, hence

∂VT+1(xT+1, uT+1)

∂xT+1

= 0 = (c+H ′
T+1(xT+1))

∂VT+1(xT+1, uT+1)

∂uT+1

.

So (a) and (b) are both true for t = T + 1.

Next, we assume that (a) and (b) hold true for t+1 ∈ {2, · · · , T +1}, and

we need to show that they both hold for t.

We first prove part (a): y∗t ≤ zt. To show y∗t ≤ zt, it suffices to show that

∂Πt

∂yt
(vt, zt) ≤ 0, i.e.,

∂Πt

∂yt
(vt, zt) =

∂

∂yt
EDtVt+1

(
(zt −Dt)

+, vt + pmin{Dt, zt} − czt − h(zt −Dt)
+
)

= EDt≤zt

∂Vt+1

∂xt+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

−EDt≤zt(c+ h)
∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

+EDt>zt(p− c)
∂Vt+1

∂ut+1

(0, vt + (p− c)zt)

≤ 0.
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We know that

EDt≤zt

∂Vt+1

∂xt+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

−EDt≤zt(c+ h)
∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

+EDt>zt(p− c)
∂Vt+1

∂ut+1

(0, vt + (p− c)zt)

= EDt≤zt−zt+1

∂Vt+1

∂xt+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

−EDt≤zt−zt+1

(
c+H ′

t+1(zt −Dt)
)∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

+EDt≤zt−zt+1H
′
t+1(zt −Dt)

∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

+Ezt−zt+1≤Dt≤zt(
∂Vt+1

∂xt+1

− c
∂Vt+1

∂ut+1

) (zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

−EDt≤zth
∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

+EDt>zt(p− c)
∂Vt+1

∂ut+1

(0, vt + (p− c)zt) . (3.3)

The first two terms of (3.3) satisfy

EDt≤zt−zt+1

∂Vt+1

∂xt+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

− EDt≤zt−zt+1

(
c+H ′

t+1(zt −Dt)
)∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt) ≤ 0

(3.4)

because of the inductive assumption of part (b). Note that xt+1 = zt−Dt ≥ zt+1.

In the third term of (3.3), H ′
t+1(zt −Dt) ≤ 0 for Dt ≤ zt − zt+1 and by Lemma

3.4.5, for any Dt ≤ zt, we have

∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt) ≥
∂Vt+1

∂ut+1

(0, vt + (p− c)zt) .
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Hence it follows that

EDt≤zt−zt+1H
′
t+1(zt −Dt)

∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt)

≤ EDt≤zt−zt+1H
′
t+1(zt −Dt)

∂Vt+1

∂ut+1

(0, vt + (p− c)zt) . (3.5)

The forth term of (3.3) satisfies

Ezt−zt+1≤Dt≤zt(
∂Vt+1

∂xt+1

− c
∂Vt+1

∂ut+1

) (zt −Dt, vt + (p+ h)Dt − (c+ h)zt) ≤ 0

(3.6)

because ∂Vt+1

∂xt+1
≤ c∂Vt+1

∂ut+1
for xt+1 = zt − Dt ≤ zt+1 by Lemma 3.4.6. The fifth

term of (3.3) satisfies

EDt≤zth
∂Vt+1

∂ut+1

(zt −Dt, vt + (p+ h)Dt − (c+ h)zt) ≤ EDt≤zth
∂Vt+1

∂ut+1

(0, vt + (p− c)zt)

(3.7)

because of Lemma 3.4.5. Putting all the above results in (3.4), (3.5), (3.6), and

(3.7) together we obtain the following result:

(3.3) ≤
(
EDt≤zt−zt+1H

′
t+1(zt −Dt)− EDt≤zth+ EDt>zt(p− c)

)∂Vt+1

∂ut+1

(0, vt + (p− c)zt) = 0,

where the equality holds because

EDt≤zt−zt+1H
′
t+1(zt −Dt)− EDt≤zth+ EDt>zt(p− c) = 0,

which is due to the fact that H ′
t(zt) = 0. The proof for part (a) is completed.

Next, we prove part (b). For xt ≥ zt, from part (a), we
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know that y∗t ≤ zt, hence xt ≥ y∗t , meaning that the maximizer of

EDt [Vt+1((yt −Dt)
+, ut + û(xt, yt, Dt))] is xt, namely,

Vt(xt, ut) = max
yt≥xt

EDt

[
Vt+1((yt −Dt)

+, ut + û(xt, yt, Dt))
]

= EDt

[
Vt+1((xt −Dt)

+, ut + û(xt, xt, Dt))
]
.

Then we have

∂Vt(xt, ut)

∂xt

− (c+H ′
t(xt))

∂Vt(xt, ut)

∂ut

= EDt≤xt

∂Vt+1

∂xt+1

(xt −Dt, ut + (p+ h)Dt − hxt)

−EDt≤xt(c+ h+H ′
t(xt))

∂Vt+1

∂ut+1

(xt −Dt, ut + (p+ h)Dt − hxt)

+EDt>xt(p− c−H ′
t(xt))

∂Vt+1

∂ut+1

(0, ut + pxt)

= EDt≤xt−zt+1(
∂Vt+1

∂xt+1

− (c+H ′
t+1(xt −Dt))

∂Vt+1

∂ut+1

) (xt −Dt, ut + (p+ h)Dt − hxt)

+EDt≤xt−zt+1H
′
t+1(xt −Dt)

∂Vt+1

∂ut+1

(xt −Dt, ut + (p+ h)Dt − hxt)

+Ext−zt+1≤Dt≤xt(
∂Vt+1

∂xt+1

− c
∂Vt+1

∂ut+1

) (xt −Dt, ut + (p+ h)Dt − hxt)

−EDt≤xt(h+H ′
t(xt))

∂Vt+1

∂ut+1

(xt −Dt, ut + (p+ h)Dt − hxt)

+EDt>xt(p− c−H ′
t(xt))

∂Vt+1

∂ut+1

(0, ut + pxt)

≤ EDt≤xt−zt+1(
∂V̂t+1

∂xt+1

− (c+H ′
t+1(xt −Dt))

∂V̂t+1

∂ut+1

) (xt −Dt, ut + (p+ h)Dt − hxt)

+0− EDt≤xt(p+ h− c)F̄ (xt)
∂Vt+1

∂ut+1

(0, ut + pxt)

+EDt>xt(p+ h− c)F (xt)
∂Vt+1

∂ut+1

(0, ut + pxt)

= 0,

where the inequality is by the inductive assumption of part (b), note also that
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xt+1 = zt −Dt ≥ zt+1; H
′
t+1(zt −Dt) ≤ 0 for Dt ≤ zt − zt+1; and

∂Vt+1

∂xt+1
≤ c∂Vt+1

∂ut+1

for xt+1 = zt −Dt ≤ zt+1 (Lemma 3.4.6). The last equality is by Lemma 3.4.7.

The proof for part (b) is completed. 2

Proposition 3.4.1 shows a fundamental insight: The optimal order quantity

in each period is no more than the corresponding optimal order quantity without

tax consideration. This extends the results for single-period problems (see, for

example, Eldor and Zilcha 2002, 2004) to the multiperiod settings.

For notational convenience, define

U−
T = −(p− c)F−1

T

(
p− c

p+ h

)
,

U+
T = (c+ h)F−1

T

(
p− c

p+ h

)
.

In addition, define recursively U−
t = U−

t+1 − (p − c)zt and U+
t = U+

t+1 + hzt +

c(zt − zt+1)
+ for t = 1, · · · , T − 1. As will be seen later, U−

t can be interpreted

as the lower threshold under which the taxation effect will disappear while U+
t

as the upper threshold above which the tax will have no impact on the optimal

ordering decision. From the definition, we can easily check that the relationships

U−
t < U−

t+1 and U+
t > U+

t+1 hold for any t ∈ {1, · · · , T}.

In what follows we will present several lemmata that will be used to prove

the main results in Theorem 2. These lemmata themselves have important

implications. First, we study the decision problem for the last period T . The

lemma will be used later in the proof of Lemma 3.4.9. Furthermore, the lemma

itself offers meaningful insights into the single-period newsvendor-type problem

with tax consideration.

Lemma 3.4.8. For period T , the optimal order-up-to level y∗T (vT ) is as follows:
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(a) y∗T (vT ) = zT = F−1
T

(
p−c
p+h

)
when vT ≤ U−

T or vT ≥ U+
T ;

(b) y∗T (vT ) ≤ zT = F−1
T

(
p−c
p+h

)
when U−

T ≤ vT ≤ U+
T .

Proof. Given the initial state (xT , uT ) and for different order-up-to level yT , the

total expected after-tax profit is

ΠT (vT , yT ) = EDT

{
uT+1 − τu+

T+1

}
= EDT

{[
vT + (p+ h)DT − (p+ h)(DT − yT )

+ − (c+ h)yT
]

−τ
(
vT + (p+ h)DT − (p+ h)(DT − yT )

+ − (c+ h)yT
)+}

.

Taking the derivative of ΠT (vT , yT ) with respect to yT , we obtain the following.

Case (i): vT ≤ 0:

∂ΠT (vT , yT )

∂yT
=


p− c− (p+ h)Pr(DT < yT ), if 0 ≤ yT ≤ −vT

p−c
;

(1− τ)(p− c)− (1− τ)(p+ h)Pr(DT < yT )

−τ(c+ h)Pr
(
DT < (c+h)yT−vT

p+h

)
, if yT ≥ −vT

p−c
.

Case (ii): vT ≥ 0:

∂ΠT (vT , yT )

∂yT
=


(1− τ)(p− c)− (1− τ)(p+ h)Pr(DT < yT ), if 0 ≤ yT ≤ vT

c+h
;

(1− τ)(p− c)− (1− τ)(p+ h)Pr(DT < yT )

−τ(c+ h)Pr
(
DT < (c+h)yT−vT

p+h

)
, if yT ≥ vT

c+h
.

Notice that Pr(DT < zT ) =
p−c
p+h

, we see that ∂ΠT (vT ,yT )
∂yT

≤ 0. Recall that

ΠT (vT , yT ) is concave, part (b) follows. Next we prove part (a). We discuss

case (i) first.

Case (i): vT ≤ 0. First, we show that ΠT (vT , yT ) is differentiable in yT

at all but one point, which is yT = −vT
p−c

. In fact, we have the left and right
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derivatives at yT = −vT
p−c

as follows.

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
= p− c− (p+ h)Pr(DT <

−vT
p− c

),

∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
= (1− τ)(p− c)− (1− τ)(p+ h)Pr

(
DT <

−vT
p− c

)
− τ(c+ h)Pr

(
DT <

−vT
p− c

)
= p− c− (p+ h)Pr(DT <

−vT
p− c

)− τ

[
(p− c)− (p− c)Pr

(
DT <

−vT
p− c

)]
.

Note that

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
≥ ∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
.

By setting ∂−ΠT

∂yT

(
vT ,

−vT
p−c

)
= 0, we obtain the corresponding vT as follows.

vT = −(p− c)F−1

(
p− c

p+ h

)
= U−

T .

Clearly, we have

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
≤ 0

for vT ≤ U−
T and

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
> 0

for vT > U−
T . Therefore when vT ≤ U−

T , the optimal order-up-to level is obtained
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by setting ∂ΠT

∂yT
(vT , yT ) = 0 and the solution is invariable with vT :

y∗T = F−1
T

(
p− c

p+ h

)
if vT ≤ U−

T .

Case (ii): vT ≥ 0. Different from the case where vT ≤ 0, it is easy to show

that ΠT (vT , yT ) is differentiable in yT for all yT ≥ 0. By setting ∂ΠT

∂yT

(
vT ,

vT
c+h

)
=

0, we obtain the corresponding v:

vT = (c+ h)F−1

(
p− c

p+ h

)
= U+

T .

Clearly, we have

∂ΠT

∂yT

(
vT ,

vT
c+ h

)
≤ 0

for vT ≥ U+
T and

∂ΠT

∂yT

(
vT ,

vT
c+ h

)
> 0

for vT < U+
T . Therefore when vT ≥ U+

T , the optimal order-up-to level is obtained

by setting ∂ΠT

∂yT
(vT , yT ) = 0 and the solution is invariable with vT :

y∗T = F−1
T

(
p− c

p+ h

)
if vT ≥ U+

T .

The proof for part (a) is then completed by combining the above two cases. 2

Lemma 3.4.8 considers a single-period (the last-period) newsvendor-type

decision problem. Obviously, it differs from the classic newsvendor problem

by considering after-tax-profit objective. Furthermore, it also differs from the
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newsvendor problem with after-tax-profit objective because it considers the ini-

tial states that consist of the initial inventory and profit. As a result, it offers

insights different from the single-period counterparts with tax asymmetry that

assumes zero starting inventory and profit (e.g., Eldor and Zilcha 2002, 2004).

Specifically, Lemma 3.4.8 shows that the impact of tax asymmetry depends on

the initial equity level : when the equity level is sufficiently low or high, the tax

asymmetry has no effect on the optimal order quantity, the manufacturer can

make production decisions as if there is no tax asymmetry. When the equity lev-

el is intermediate, i.e., when it is in a certain interval, then the manufacturer’s

order decision is affected by the tax asymmetry. Specifically, the manufacturer

becomes more conservative and orders less when her equity level is intermediate.

These insights will be extended to the multi-period settings later in Theorem

2. Before presenting Theorem 2, we prove a related lemma and a corollary.

Lemma 3.4.9. For each period t ≥ 1, if vt ≤ U−
t+1−(p−c)zt we can decompose

the value function as follows,

Πt(vt, yt) = vt +Ht(yt) (3.8)

Vt(xt, ut) = vt +Ht(max{xt, zt}) (3.9)

and if vt ≥ U+
t+1 + hzt we have,

Πt(vt, yt) = (1− τ)(vt +Ht(yt)) (3.10)

Vt(xt, ut) = (1− τ)(vt +Ht(max{xt, zt})), (3.11)

where yt is the decisive inventory level for state (xt, ut) in period t.

Proof. The proof is by induction on t. According to Lemma 3.4.8, it is easy
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to verify that in period T , we have Πt(vt, yt) = vt + Ht(yt) and Vt(xt, ut) =

vt+Ht(max{xt, zt}) for vT ≤ U−
T ; Πt(vt, yt) = (1−τ)(vt+Ht(yt)) and Vt(xt, ut) =

(1 − τ)(vt +Ht(max{xt, zt})) for vT ≥ U+
T . This proves the result for T . Now

assume inductively that the result holds for t + 1. In what follows we should

prove it also holds for period t.

If vt ≤ U−
t , let yt = zt, then for any realized demand Dt, the equity level

vt+1 should satisfy vt+1 = vt+ pmin{zt, Dt}− czt−h(zt−Dt)
++ c(zt−Dt)

+ ≤

vt + (p− c)zt ≤ U−
t + (p− c)zt ≤ U−

t+1. According to the assumption for period

t+ 1 and the definition of Ht+1, for period t we have,

Πt(vt, zt)

= EDt

[
Vt+1

(
(zt −Dt)

+, vt + pmin{zt, Dt} − czt − h(zt −Dt)
+
)]

= EDt

[
vt + pmin{zt, Dt} − czt + (c− h)(zt −Dt)

+ +Ht+1(max{(zt −Dt)
+, zt+1})

]
= vt + EDt

[
pmin{zt, Dt} − czt + (c− h)(zt −Dt)

+ +Ht+1(max{(zt −Dt)
+, zt+1})

]
= vt +Ht(zt).

Given vt, we have ∂Πt(vt,zt)
∂yt

= 0 and note Πt(vt, yt) is a concave function in yt,

which leads to the implication that zt is the global optimal solution of Πt(vt, yt)

when vt ≤ U−
t . Under the constraint yt ≥ xt, the optimal inventory level yt

should be at least as the original inventory level, e.g., yt = max{xt, zt} and the

corresponding optimal value function Vt(xt, ut) = vt + Ht(max{xt, zt}). Using
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the similar argument, we can verify equation (3.10) and (3.11) when vt ≥ U+
t :

Πt(vt, zt)

= EDt

[
Vt+1

(
(zt −Dt)

+, vt + pmin{zt, Dt} − czt − h(zt −Dt)
+
)]

= EDt

[
(1− τ)

(
vt + pmin{zt, Dt} − czt + (c− h)(zt −Dt)

+

+Ht+1(max{(zt −Dt)
+, zt+1})

)]
= (1− τ)vt + (1− τ)

(
EDt

[
pmin{zt, Dt} − czt + (c− h)(zt −Dt)

+

+Ht+1(max{(zt −Dt)
+, zt+1})

])
= (1− τ)(vt +Ht(zt)).

Note ∂Πt(vt,zt)
∂yt

= 0, leading to Vt(xt, Ut) = (1 − τ)
(
vt + Ht(max{xt, zt})

)
when

vt ≥ U+
t . 2

Lemma 3.4.9 shows a decomposition property that extends the correspond-

ing single-period counterpart, i.e., Lemma 3.4.8 (a), to the general multi-period

settings. It says that in each period t, when the equity level is sufficiently low or

high (i.e., vt < U−
t or vt > U+

t ), the manufacturer orders the optimal inventory

level zt as if there is no tax effect on the order decision, i.e., y∗t = zt.

Corollary 3.4.2. The optimal expected after-tax profit Vt(xt, ut) in any period

t should satisfy the following,

(1− τ)(vt +Ht(max{xt, zt})) ≤ Vt(xt, ut) ≤ vt +Ht(max{xt, zt}).

Proof. Using mathematic induction, it is easy to show for any vt in any period
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t, it holds,

(1− τ)(vt +Ht(max{xt, zt})) ≤ Vt(xt, ut) ≤ vt +Ht(max{xt, zt}),

which completes the proof. 2

Lemma 3.4.9 provides an upper bound and a lower bound for the optimal

profit under tax consideration. It shows the fact that when the initial profit is

very low (very high), the terminal profit is certainly negative (positive), leading

to zero (full) tax payment at the end of the horizon.

Summarizing the previous results including Proposition 1 to Lemma 3.4.9,

the following theorem is now in place. It characterizes how the equity level

affects the firm’s optimal order-up-to policies.

Theorem 3.4.2. For period t = 1, · · · , T − 1, the optimal order-up-to level

y∗t (vt) satisfies the following properties:

(a) y∗t (vt) ≡ zt when vt ≤ U−
t or vt ≥ U+

t ;

(b) y∗t (vt) ≤ zt when U−
t < vt < U+

t ;

(c) y∗t (vt) ≥ max{U−
t+1−vt

p−c
,
vt−U+

t+1

h
}.

Proof. Part (a) and (b) can be proved by applying Proposition 3.4.1 and Lemma

3.4.9. Next we prove part (c). Let y1 =
U−
t+1−vt

p−c
in function Πt(vt, yt). For any

realized Dt, we have vt+1 ≤ U−
t+1, then the decomposition property holds, which

leads to Πt(vt, y1) = vt + Ht(y1). Note y1 ≤ zt and the concavity of Ht(·), it

follows that

∂Πt(vt, y1)

∂yt
=

dHt(y1)

dyt
≥ 0,
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which implies y∗t ≥ U−
t+1−vt

p−c
. In the similar way, when y2 =

vt−U+
t+1

h
≤ zt, we have

∂Πt(vt, y2)

∂yt
= (1− τ)

dHt(y2)

dyt
≥ 0.

Then it follows, y∗t (vt) ≥ max{U−
t+1−vt

p−c
,
vt−U+

t+1

h
}, which completes the proof of

part (c). 2

Having discussed a number of important properties before presenting The-

orem 2, the insights for this key result are now evident. We have shown that

in the multi-period setting, in every period, the tax asymmetry affects manu-

facturer’s optimal decision in a similar manner. Specifically, in each period t,

there exist two state-dependent threshold values, i.e., U−
t < U+

t , that partial-

ly characterize the manufacturer’s optimal ordering behavior. In each period

t, when the manufacturer’s equity level vt is smaller (larger) than the lower

(upper) threshold value U−
t (U+

t ), the manufacturer’s optimal order-up-to level

is the same as that in the case without tax consideration (or more precisely

without tax asymmetry). When the manufacturer’s equity level vt is between

the two threshold values(i.e., vt ∈ [U−
t , U

+
t ]), the manufacturer orders less than

the corresponding optimal quantity without tax consideration. These imply

that the manufacturer can make ordering decisions as if there is no tax or no

tax asymmetry when faced with very low or high equity level, but not so when

the equity level is somewhat intermediate. This can be explained as follows.

When faced with very low equity level, the manufacturer knows that he will

definitely earn a negative net profit, paying no tax at all. When faced with very

high equity level, the manufacturer knows that he will definitely earn a positive

profit, paying a tax that is proportional to his net profit. Note that this does
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not necessarily mean that the manufacturer can make ordering decisions easily

when faced with low or high equity level. There are two reasons. First, the

manufacturer still needs to know the threshold values (U−
t and U+

t ) below or

above which the impact of tax asymmetry will vanish. Second, the two thresh-

old values are period-dependent, and the manufacturer has to determine the

two values in each period.

Unfortunately, further characterizing the policy structure when the equity

level falls in [U−
t , U

+
t ] is technically intractable, if not impossible. There are two

immediate reasons. First, from Theorem 2, we can easily see that the order-

ing policy when the equity level is in [U−
t , U

+
t ] is not monotone, preventing us

from using a number of well-established methods to prove monotone inventory

policies. Second, further characterizing the policy structure requires the manip-

ulation of the second and third order derivatives, which is prohibitively difficult

considering the special nested structure of the value functions. One additional

reason, as will be discussed in the next section, is that the policy structure

when the equity level is in [U−
t , U

+
t ] is rather complicated. Nevertheless, we will

show in the next section through numerical experiments a number of additional

insights, including the policy pattern when the equity level falls in [U−
t , U

+
t ].

We close the this section by providing the following proposition that shows

how tax rate τ affects the optimal value function Vt(xt, ut). For convenience,

we define Vt(xt, ut, τ) as the optimal expected after-tax profit in period t (1 ≤

t ≤ T + 1) with tax rate τ ∈ [0, 1).

Proposition 3.4.2. The optimal expected after-tax profit Vt(xt, ut, τ) in any

period t is decreasing in the tax rate τ .

Proof. Let τ1 ≤ τ2. We prove by induction. First, it is easy to check that
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VT+1 (xT+1, uT+1, τ1) ≥ VT+1 (xT+1, uT+1, τ2) . Suppose Vt+1 (xt+1, ut+1, τ1) ≥

Vt+1 (xt+1, ut+1, τ2) for any t = 2, · · · , T . It follows that

Vt (xt, ut, τ1) = max
yt≥xt

EDt

[
Vt+1

(
(yt −Dt)

+, ut + ût(xt, yt, Dt), τ1
)]

≥ max
yt≥xt

EDt

[
Vt+1

(
(yt −Dt)

+, ut + ût(xt, yt, Dt), τ2
)]

= Vt (xt, ut, τ2) ,

which completes the proof. 2

This property confirms the intuition that a larger tax rate leads to a lower

after-tax profit. Thus far we have discussed a number of analytical results in

this section. In the next section we will discuss numerical examples that offer

some additional insights of the proposed problem.

3.5. Numerical Studies

In this section, we will conduct numerical studies to investigate the problem

and policy structures. As will be seen later, we demonstrate that the optimal

order quantity without considering tax asymmetry may depart from the true

optimal order quantity significantly and the profit loss may be as large as over

10% compared with the true optimal profit. We also see from the numerical

results that in the tax-affected interval [U−
t , U

+
t ], the optimal order quantities

show a “V”-shaped structure. We start our discussions with a single-period

problem.

Example 3.5.1. Consider a problem instance with τ = 0.25, c = 1, p = 5,

h = 1, xT = 0, D ∼ U [0, 10]. Using equations in Section 3.4, we can compute
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zT , U
−
T , and U+

T to obtain

zT = 6.67, U−
T = −26.67, U+

T = 13.33.

For different initial cash level uT , the optimal order-up-to levels are shown in

Figure 3.1.
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Figure 3.1: Optimal Order-up-to Levels for Different Initial Profit

In Example 3.5.1, we let the initial inventory level be zero to facilitate

discussions. Recall the results in Theorem 1, the optimal order-up-to level y∗T

here solely depends on the equity value vT = uT . As we see from Figure 3.1,

the initial cumulative profit uT exerts significantly influence on y∗T in that y∗T is

always no more than the optimal no-taxed order-up-to level zT . Such differences

may be as large as over 10% of the optimal order-up-to levels, suggesting a large

deviation from the optimum may happen if tax consideration is ignored in a

firm’s inventory decision.

In particular, we see the optimal order-up-to level y∗T with respect to the

initial profit uT is not monotone. The optimal order-up-to level shows a “V”-
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shaped pattern. When UT is small or large enough — specifically, smaller than

a threshold value (U−
T ) or larger than another threshold value (U+

T ) — the

optimal order-up-to level is indifferent from zT regardless of tax rates. This

is because when the initial profit is negative (positive) enough, the firm will

have negative (positive) before-tax profit with probability one. Thus, under

these two situations and in terms of optimal decisions, the tax effect is virtually

eliminated. In addition, when both negative and positive before-tax profits are

possible, i.e., when the initial profit is between the two threshold values, yT

should first decreases to a turning point U0
T and then increases to zT . This

observation is not intuitive because it does not necessarily mean the firm will

order more aggressively when her equity level increases. We explain this result

as follows. When the equity level lies in the middle, the firm is unsure about

whether she will pay the tax in the last period or not. As a result, she tends

to order less than the optimal inventory level without tax consideration, this

finding is in accord with earlier results in Eldor and Zilcha (2002, 2004) where

they claim a firm who is risk averse to the profit uncertainty will order less. In

other words, the firm’s behavior will become more conservative when the future

net earnings are more uncertain. And this uncertainty comes the greatest when

the initial profit reaches a certain value U0
T . The above discussions about the

“V”-shaped policy structure in period T when the equity level falls in [U−
T , U

+
T ]

can be proved analytically, as shown below.

Proposition 3.5.1. For period T , there exists a constant U0
T , such that the

optimal order-up-to level y∗T (vT ) is decreasing in vT when U−
T ≤ vT ≤ U0

T and

is increasing in vT when U0
T ≤ vT ≤ U+

T .

Proof. See Appendix. 2
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The next example illustrates Proposition 3.5.1.

Example 3.5.2. Continue with Example 3.4.1. Using equations from the proof

of Proposition 3.5.1, we can compute U0
T , this together with the quantities given

in Example 3.5.1 lead to the following results:

zT = 6.67, U−
T = −26.67, U0

T = −24.00, U+
T = 13.33.

A careful investigation of Proposition 3.5.1 and Example 3.5.3 offers us

some additional insights. First, notice that U0
T < 0, this is not by accident.

In fact, U0
T is the equity level at which the firm orders the smallest quantity

compared with the case without tax asymmetry. U0
T reflects the equity level

at which the firm is faced with some kind of “even” chance to be profitable

or losing. Second, the fact that the optimal order quantity first decrease and

then increase in vT reflects the probability at which the firm’s terminal profit

is positive (negative) is increasing (decreasing) in the initial equity level. The

equity level U0
T is the point at which the two opposite chances becomes equally

important.

Although it is technically intractable to generalize the above optimal policy

structures to every decision period of the planning horizon, it holds true in

general based on the intensive numerical studies we conducted. In the following

provide a two-period example for illustration.

Example 3.5.3. Consider a two-period problem instance with c = 1, p = 5,

h = 1, x = 0, D1 ∼ U [0, 10] and D2 ∼ U [0, 10]. The optimal order-up-to levels

in the first decision period (i.e., t = 1) for two different tax rates τ = 0.25 and

0.4 are shown in Figure 3.2.
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Figure 3.2: Optimal Order-up-to Level for Different Initial Profit

For both cases with different tax rates τ = 0.25 and 0.4, in this two-period

setting we observe the expected policy properties as Theorem 2 and Propo-

sition 3.5.1 claim. In particular, there is a threshold value U−
1 (U+

1 ), under

(above) which the firm will behave as if there is no tax effect, irrespective of

the demand realizations; when U−
1 < v1 < U+

1 , the optimal order-up-to level is

nearly decreasing first to a certain level U0
1 and then increases to the non-taxed

inventory level z1 = 7.91, showing a quasi-“V”-shaped pattern similar to the

single-period setting. Note that the turning point U0
1 is also below 0 which

means only in the case where negative initial profit occurs could the optimal

order-up-to level decrease in v1. Also, U0
1 lies near a certain level v1 such that

v2 = v1+(p− c)y∗1(v1) = U−
2 , which represents the turning point happens when

the firm will always incur a tax cost in period T . All the above observations

are consistent with the results for one-period problems and can be explained as

the firm’s conservative ordering behavior under demand uncertainty and initial

loss. This is in contrast with the increasing property of y∗1 when v1 is larger than

U0
1 . However, we note the decreasing property is not entirely monotone because
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there exists a small interval of v1 within which the optimal inventory level y∗1

increases mildly. This small abnormality could be attributed to the second pe-

riod’s inventory constraint where y∗2 cannot be reached when the second-period

demand is rather low, e.g., x2 = y1 −D1 ≥ y∗2. For such x2 and in the function

V2(x2, u2), the marginal value of x2 and u2 is not decreasing as that without the

constraint y2 ≥ x2. Consistent from the pervious statement, we can see from

this fact that the optimal policy is not perfectly “V”-shaped, which certainly

hinders us from further characterizing the policy property. Furthermore, we

find faced with a larger initial profit, the firm becomes more aggressive when

ordering until the optimal ordering level increases back to z1. However, In ad-

dition, Figure 3.2 shows when the tax rate increases, e.g., from τ = 0.25 to

τ = 0.4, the optimal order-up-to level y∗1 should weakly decreases for every

given initial profit. This observation indicates the fact that the firm becomes

more conservative and order less when the degree of tax asymmetry becomes

higher. In this sense, it is more important for the firm to adjust the traditional

inventory policy to explicitly consider the impact of tax.
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Figure 3.3: Optimal Order-up-to Level for Different Length of Horizon
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Next, we study how the length of horizon affects the optimal solution.

Figure 3.3 shows the optimal order-up-to level for the inventory problem with

horizon three and horizon two respectively. We see that with the same initial

profit u and tax-rate τ = 0.25, in both cases the order-up-to level deviates from

the the no-taxed inventory level z, and this deviation shares a similar shape

but is much significant in the former case, e.g., the deviation from 7.9 to 7.6

versus that from 8 to 7.8. The reason behind this observation is straightforward

since when the planning horizon is long, the impact caused by the terminal tax

asymmetry effect will alleviate and consequently the firm opts to choose the

optimal inventory position close to the non-taxed level z. This suggests that it

becomes more imperative for the firm to consider tax asymmetry when she is

closer to the end of the planning horizon.

Finally, we study how the optimal profit changes with respect to the initial

profit. First, consider the problem in period T . Taking the first order derivative

of the optimal expected profit function VT (xT , uT ) with respect to uT gives the

following expression:

∂VT (xT , uT )

∂uT

=


1, if vT ≤ U− and y∗T ≥ xT ,

1− τ, if vT ≥ U+
T and y∗T ≥ xT ,

1− τ F̄T

(
(c+h)y∗T−vT

p+h

)
, if U−

T ≤ vT ≤ U+
T and y∗T ≥ xT .

For simplicity, we assume the initial inventory level is zero (similar insights

can be obtained for a positive initial inventory level). It is clear that without

tax consideration (i.e., tax rate τ = 0), a unit increase of the initial profit uT

will lead to a unit increase of the expected profit VT (xT , uT ). When the tax rate

is positive, we see from the expression of ∂VT (xT ,uT )
∂uT

that the tax asymmetry has
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unequal impacts on the expected profit for different initial equity levels. When

vT ≤ U−
T , that is, when the initial equity level is small enough, the final before-

tax profit is definitely negative, therefore there is no tax payment and a unit

increase of the initial fund will lead to a unit increase of the expected after-tax

profit. Under another extreme situation, when vT ≥ U+
T , that is, when the

initial equity is large enough, then the pre-tax profit is always positive, and

thus a fixed portion τ of the total before-tax profit has to be deducted for tax

payment. Therefore, a unit increase of the initial profit will lead to a 1 − τ

increase of the expected after-tax profit. When vT is at an intermediate level,

tax has moderate effect on expected after-tax profit. This can be validated

from the relationship that 1 − τ ≤ ∂VT (xT ,uT )
∂uT

≤ 1 for any vT . It is in these

“moderate” cases that tax asymmetry has the largest effect on the after-tax

profit compared with the ordering behavior when tax is ignored. Because in

such a region, the tax payment is dependent on the values of the initial profit

and the optimal order-up-to level has the most significant deviation from the

ordering level without tax consideration. The following example demonstrate

the these discussions.

Example 3.5.4. Continue with Example 3.4.1. We now vary the initial prof-

it level and consider the percentage improvement of the true optimal ordering

policy compared with the policy without considering tax asymmetry. The results

are shown in Figure 3.4.

We see from Figure 3.4 that the profit difference may be as large as over

10% of the optimal profits. This vividly shows that tax asymmetry may have

significant impact on the firm’s operational performance. For multi-period set-

tings, the impact of tax asymmetry on the expected after-tax profit is similar to
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Figure 3.4: Optimal Profit Improvement for Different Initial Profit

that on ordering decisions. In particular, a firm’s terminal expected after-tax

profit is more severely affected by tax asymmetry when she is closer to the end

the planning horizon.

3.6. Concluding Remarks

In this paper, we propose a multi-period inventory control problem which aims

to maximize the expected after-tax terminal profit for a finite horizon such as

a tax year. We show that a state-dependent base-stock policy is optimal. We

find the firm orders less inventory when her equity level is intermediate because

of the conservative behavior under demand uncertainty. We discuss a number

of structural properties and provide insights on the optimal ordering decisions

and profits under the consideration of tax asymmetry. We develop a series of

useful properties that help partially characterize the structure of the optimal

policy. We illustrate further insights through numerical examples. Notably, we

find that the optimal order quantity and the optimal profit may deviate as large
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as over 10% from the true optimal ones if tax asymmetry is otherwise ignored.

It is easy to incoordinate a discount factor in our model and the results

will hold true. Also, it is possible to extend our results to the backlogging case,

in which the state-dependent base-stock policy is also optimal. However, the

impact of the tax asymmetry on the optimal decisions and profits will be more

complex. Yet, we believe based on our analytical and numerical studies that

the basic insights will still hold in this case.

Our model has a number of natural extensions. First, as mentioned earlier,

it is straightforward to apply the techniques we develop in this paper to the

case of loss-averse decision maker whose utility is evaluated at the end of the

planning horizon. Second, we can consider the multi-product version of the

proposed problem. It would be interesting to study the interactions among

different products that are otherwise irrelevant when there is no tax along this

direction. Third, it would be useful to consider longer planning horizons that

include multiple tax years. In this case, one has to consider the impact of loss

carry back and/or forward. Finally, a number of new decisions problems arise

when one combines other issues such as lead times, pricing, yield, etc.

3.7. Appendix

Proof of Proposition 3.5.1

Proof. Refering to the notation in Lemma 3.4.8 and its proof, let U0
T be the

unique solution to

∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
= 0 (vT ≤ 0),
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where ∂+ΠT

∂yT
(vT , yT ) represents the right partial derivative respect to yT . Define

yT (vT ) as the optimal order-up-to level given an initial equity level vT . Similar

to the proof of Lemma 3.4.8, in the following we consider case two cases.

Case (a): vT ≤ 0. From the proof of Lemma 3.4.8, we see that ΠT (vT , yT )

is differentiable in yT at all but one point, which is yT = −vT
p−c

, and we have the

left and right derivatives at yT = −vT
p−c

as follows.

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
= p− c− (p+ h)Pr(DT <

−vT
p− c

),

∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
= p− c− (p+ h)Pr(DT <

−vT
p− c

)

− τ

[
(p− c)− (p− c)Pr

(
DT <

−vT
p− c

)]
.

Note that

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
≥ ∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
.

By setting ∂+ΠT

∂yT

(
vT ,

−vT
p−c

)
= 0, we obtain the corresponding vT , which is de-

noted as U0
T as discussed earlier. Note that U0

T ≥ U−
T . Clearly, we have

∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
≤ 0

for vT ≤ U0
T and

∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
> 0

for vT > U0
T . Therefore, when vT ∈ [U0

T , 0], by setting ∂+ΠT

∂yT
(vT , yT ) = 0, we
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obtain the optimal order-up-to level yT (vT ). Note that

∂2ΠT

∂yT∂vT
(vT , yT ) =

τ(c+ h)

p+ h
Pr

(
DT <

(c+ h)yT − vT
p+ h

)
≥ 0, yT ≥ −vT

p− c
.

Thus, when vT ∈ [U0
T , 0], yT (vT ) is increasing in vT . Now consider vT ∈ [U−

T , U
0
T ].

For all such vT , we have

∂−ΠT

∂yT

(
vT ,

−vT
p− c

)
≥ 0

and

∂+ΠT

∂yT

(
vT ,

−vT
p− c

)
≤ 0.

Hence the optimal order up to level is

y∗T =
−vT
p− c

,

which is decreasing in vT .

Case (b): vT ≥ 0. Recall from the proof of Lemma 3.4.8 that when

vT ≤ 0, ΠT (vT , yT ) is differentiable in yT for all yT ≥ 0 and that the optimal

order-up-to level is

y∗T = F−1
T

(
p− c

p+ h

)
if vT ≥ U+

T .

When vT < U+
T , by setting ∂ΠT

∂yT
(vT , yT ) = 0, we obtain the optimal order-up-to
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level yT (vT ). Notice that

∂2ΠT

∂yT∂vT
(vT , yT ) =

τ(c+ h)

p+ h
Pr

(
DT <

(c+ h)yT − vT
p+ h

)
≥ 0, yT ≥ vT

c+ h
.

Thus, when vT ∈ [0, U+
T ], yT (vT ) is increasing in vT .

Finally, notice that the above two cases (a) and (b) becomes invariant when

vT = 0. The proof is then completed by combining the above two cases. 2
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